Library UniMath.CategoryTheory.Core.Categories
Categories
Contents :
- precategories: homs are arbitrary types precategory
- categories: hom-types are sets category
Require Import UniMath.Foundations.Propositions.
Require Import UniMath.Foundations.Sets.
Require Import UniMath.MoreFoundations.PartA.
Require Import UniMath.MoreFoundations.Notations.
Definition precategory_ob_mor : UU
:= ∑ ob : UU, ob -> ob -> UU.
Definition make_precategory_ob_mor (ob : UU)(mor : ob -> ob -> UU) :
precategory_ob_mor := tpair _ ob mor.
Definition ob (C : precategory_ob_mor) : UU := @pr1 _ _ C.
Coercion ob : precategory_ob_mor >-> UU.
Definition precategory_morphisms { C : precategory_ob_mor } :
C -> C -> UU := pr2 C.
We introduce notation for morphisms in order for this notation not to pollute subsequent files,
we define this notation within the scope "cat"
Declare Scope cat.
Delimit Scope cat with cat. Local Open Scope cat.
Notation "a --> b" := (precategory_morphisms a b) : cat.
Notation "b <-- a" := (precategory_morphisms a b) (only parsing) : cat.
Notation "C ⟦ a , b ⟧" := (precategory_morphisms (C:=C) a b) : cat.
Definition precategory_id_comp (C : precategory_ob_mor) : UU
:=
(∏ c : C, c --> c)
×
(∏ a b c : C, a --> b -> b --> c -> a --> c).
Definition precategory_data : UU
:= ∑ C : precategory_ob_mor, precategory_id_comp C.
Definition make_precategory_data (C : precategory_ob_mor)
(id : ∏ c : C, c --> c)
(comp: ∏ a b c : C, a --> b -> b --> c -> a --> c)
: precategory_data
:= tpair _ C (make_dirprod id comp).
Definition precategory_ob_mor_from_precategory_data (C : precategory_data) :
precategory_ob_mor := pr1 C.
Coercion precategory_ob_mor_from_precategory_data :
precategory_data >-> precategory_ob_mor.
Definition identity {C : precategory_data}
: ∏ c : C, c --> c
:= pr1 (pr2 C).
Definition compose {C : precategory_data} { a b c : C }
: a --> b -> b --> c -> a --> c
:= pr2 (pr2 C) a b c.
Notation "f · g" := (compose f g) : cat.
Notation "g ∘ f" := (compose f g) (only parsing) : cat.
Definition postcompose {C : precategory_data} {a b c : C} (g : b --> c) (f : a --> b)
: a --> c
:= compose f g.
Axioms of a precategory
- identity is left and right neutral for composition
- composition is associative
Definition is_precategory (C : precategory_data) : UU
:=
((∏ (a b : C) (f : a --> b), identity a · f = f)
×
(∏ (a b : C) (f : a --> b), f · identity b = f))
×
((∏ (a b c d : C) (f : a --> b) (g : b --> c) (h : c --> d), f · (g · h) = (f · g) · h)
×
(∏ (a b c d : C) (f : a --> b) (g : b --> c) (h : c --> d), (f · g) · h = f · (g · h))).
Definition is_precategory_one_assoc (C : precategory_data) : UU
:=
((∏ (a b : C) (f : a --> b), identity a · f = f)
×
(∏ (a b : C) (f : a --> b), f · identity b = f))
×
(∏ (a b c d : C) (f : a --> b) (g : b --> c) (h : c --> d), f · (g · h) = (f · g) · h).
Definition is_precategory_one_assoc_to_two (C : precategory_data) :
is_precategory_one_assoc C -> is_precategory C
:= λ i, (pr11 i,,pr21 i),,(pr2 i,,λ a b c d f g h, pathsinv0 (pr2 i a b c d f g h)).
Definition make_is_precategory {C : precategory_data}
(H1 : ∏ (a b : C) (f : a --> b), identity a · f = f)
(H2 : ∏ (a b : C) (f : a --> b), f · identity b = f)
(H3 : ∏ (a b c d : C) (f : a --> b) (g : b --> c) (h : c --> d), f · (g · h) = (f · g) · h)
(H4 : ∏ (a b c d : C) (f : a --> b) (g : b --> c) (h : c --> d), (f · g) · h = f · (g · h))
: is_precategory C
:= (H1,,H2),,(H3,,H4).
Definition make_is_precategory_one_assoc {C : precategory_data}
(H1 : ∏ (a b : C) (f : a --> b), identity a · f = f)
(H2 : ∏ (a b : C) (f : a --> b), f · identity b = f)
(H3 : ∏ (a b c d : C) (f : a --> b) (g : b --> c) (h : c --> d), f · (g · h) = (f · g) · h)
: is_precategory C
:= (H1,,H2),,(H3,,λ a b c d f g h, pathsinv0 (H3 a b c d f g h)).
Definition precategory := total2 is_precategory.
Definition make_precategory (C : precategory_data) (H : is_precategory C)
: precategory
:= tpair _ C H.
Definition make_precategory_one_assoc (C : precategory_data) (H : is_precategory_one_assoc C)
: precategory
:= tpair _ C (is_precategory_one_assoc_to_two C H).
Definition precategory_data_from_precategory (C : precategory) :
precategory_data := pr1 C.
Coercion precategory_data_from_precategory : precategory >-> precategory_data.
Definition has_homsets (C : precategory_ob_mor) : UU := ∏ a b : C, isaset (a --> b).
Lemma isaprop_has_homsets (C : precategory_ob_mor) : isaprop (has_homsets C).
Show proof.
Definition category := ∑ C:precategory, has_homsets C.
Definition make_category C h : category := C,,h.
Definition category_to_precategory : category -> precategory := pr1.
Coercion category_to_precategory : category >-> precategory.
Coercion homset_property (C : category) : has_homsets C := pr2 C.
Definition homset
{C : category}
(x y : C)
: hSet
:= x --> y ,, homset_property C x y.
Definition makecategory
(obj : UU)
(mor : obj -> obj -> UU)
(homsets : ∏ a b, isaset (mor a b))
(identity : ∏ i, mor i i)
(compose : ∏ i j k (f:mor i j) (g:mor j k), mor i k)
(right : ∏ i j (f:mor i j), compose _ _ _ (identity i) f = f)
(left : ∏ i j (f:mor i j), compose _ _ _ f (identity j) = f)
(associativity : ∏ a b c d (f:mor a b) (g:mor b c) (h:mor c d),
compose _ _ _ f (compose _ _ _ g h) = compose _ _ _ (compose _ _ _ f g) h)
(associativity' : ∏ a b c d (f:mor a b) (g:mor b c) (h:mor c d),
compose _ _ _ (compose _ _ _ f g) h = compose _ _ _ f (compose _ _ _ g h))
: category
:= (make_precategory
(make_precategory_data
(make_precategory_ob_mor
obj
(λ i j, mor i j))
identity compose)
((right,,left),,(associativity,,associativity'))),,homsets.
Lemma isaprop_is_precategory (C : precategory_data)(hs: has_homsets C)
: isaprop (is_precategory C).
Show proof.
apply isofhleveltotal2.
{ apply isofhleveltotal2. { repeat (apply impred; intro). apply hs. }
intros _. repeat (apply impred; intro); apply hs. }
intros _. apply isofhleveltotal2.
{ repeat (apply impred; intro); apply hs. }
{ intros. repeat (apply impred; intro). apply hs. }
{ apply isofhleveltotal2. { repeat (apply impred; intro). apply hs. }
intros _. repeat (apply impred; intro); apply hs. }
intros _. apply isofhleveltotal2.
{ repeat (apply impred; intro); apply hs. }
{ intros. repeat (apply impred; intro). apply hs. }
Lemma category_eq (C D : category) :
(C:precategory_data) = (D:precategory_data) -> C=D.
Show proof.
intro e. apply subtypePath. intro. apply isaprop_has_homsets.
apply subtypePath'.
{ assumption. }
apply isaprop_is_precategory.
apply homset_property.
apply subtypePath'.
{ assumption. }
apply isaprop_is_precategory.
apply homset_property.
Definition id_left (C : precategory) :
∏ (a b : C) (f : a --> b),
identity a · f = f := pr112 C.
Definition id_right (C : precategory) :
∏ (a b : C) (f : a --> b),
f · identity b = f := pr212 C.
Definition assoc (C : precategory) :
∏ (a b c d : C)
(f : a --> b) (g : b --> c) (h : c --> d),
f · (g · h) = (f · g) · h := pr122 C.
Definition assoc' (C : precategory) :
∏ (a b c d : C)
(f : a --> b) (g : b --> c) (h : c --> d),
(f · g) · h = f · (g · h) := pr222 C.
Arguments id_left [C a b] f.
Arguments id_right [C a b] f.
Arguments assoc [C a b c d] f g h.
Arguments assoc' [C a b c d] f g h.
Lemma assoc4 (C : precategory) (a b c d e : C) (f : a --> b) (g : b --> c)
(h : c --> d) (i : d --> e) :
((f · g) · h) · i = f · (g · h) · i.
Show proof.
Lemma remove_id_left (C : precategory) (a b : C) (f g : a --> b) (h : a --> a):
h = identity _ -> f = g -> h · f = g.
Show proof.
intros H eq.
intermediate_path (identity _ · f).
- destruct H. apply idpath.
- intermediate_path f.
+ apply id_left.
+ apply eq.
intermediate_path (identity _ · f).
- destruct H. apply idpath.
- intermediate_path f.
+ apply id_left.
+ apply eq.
Lemma remove_id_right (C : precategory) (a b : C) (f g : a --> b) (h : b --> b):
h = identity _ -> f = g -> f · h = g.
Show proof.
intros H eq.
intermediate_path (f · identity _).
- destruct H. apply idpath.
- intermediate_path f.
+ apply id_right.
+ apply eq.
intermediate_path (f · identity _).
- destruct H. apply idpath.
- intermediate_path f.
+ apply id_right.
+ apply eq.
Lemma id_conjugation {A : precategory} {a b : A} (f : a --> b)
(g : b --> a) (x : b --> b)
: x = identity _ -> f · g = identity _ -> f · x · g = identity _ .
Show proof.
Lemma cancel_postcomposition {C : precategory_data} {a b c: C}
(f f' : a --> b) (g : b --> c) : f = f' -> f · g = f' · g.
Show proof.
Lemma cancel_precomposition (C : precategory_data) (a b c: C)
(f f' : b --> c) (g : a --> b) : f = f' -> g · f = g · f'.
Show proof.
Lemma maponpaths_compose
{C : category} {x y z : C} (f1 f2 : C⟦x,y⟧) (g1 g2 : C⟦y,z⟧)
: f1 = f2 -> g1 = g2 -> f1 · g1 = f2 · g2.
Show proof.
Any equality on objects a and b induces a morphism from a to b