Library UniMath.CategoryTheory.Core.Setcategories
Setcategories: Precategories whose objects and morphisms are sets
Contents
- Setcategories: objects and morphisms are sets setcategory
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.Functors.
Local Open Scope cat.
Definition object_hlevel (n : nat) (C : precategory) : hProp :=
make_hProp _ (isapropisofhlevel n (ob C)).
Definition homtype_hlevel (n : nat) (C : precategory) : hProp :=
make_hProp (∏ a b : C, isofhlevel n (C ⟦ a, b ⟧))
(impred _ _ (λ _, impred _ _ (λ _, isapropisofhlevel n _))).
Definition object_homtype_hlevel (n m : nat) (C : precategory) : hProp :=
object_hlevel n C ∧ homtype_hlevel m C.
Definition is_setcategory : precategory → UU := object_homtype_hlevel 2 2.
Definition setcategory := total2 is_setcategory.
Definition category_from_setcategory (C : setcategory) : category :=
(pr1 C,, (dirprod_pr2 (pr2 C))).
Coercion category_from_setcategory : setcategory >-> category.
Definition make_setcategory
(C : category)
(H : isaset C)
: setcategory.
Show proof.
Lemma isaprop_is_setcategory (C : precategory) : isaprop (is_setcategory C).
Show proof.
Definition setcategory_objects_set (C : setcategory) : hSet :=
make_hSet (ob C) (pr1 (pr2 C)).
Definition isaset_ob (C : setcategory) : isaset C := (dirprod_pr1 (pr2 C)).
Definition isaset_mor (C : setcategory) : has_homsets C := homset_property C.
Lemma setcategory_eq_morphism_pi (C : setcategory) (a b : ob C)
(e e': a = b) : idtomor _ _ e = idtomor _ _ e'.
Show proof.
Definition setcategory_eq_idtoiso
{C : setcategory}
{x y : C}
(p q : x = y)
: pr1 (idtoiso p) = pr1 (idtoiso q).
Show proof.
Definition setcategory_refl_idtoiso
{C : setcategory}
{x : C}
(p : x = x)
: pr1 (idtoiso p) = identity _.
Show proof.
Definition setcategory_eq_idtoiso_comp
{C : setcategory}
{x x' y y' : C}
(p p' : x = x')
(f : x' --> y)
(q q' : y = y')
: idtoiso p · f · idtoiso q
=
idtoiso p' · f · idtoiso q'.
Show proof.
etrans.
{
apply maponpaths.
exact (setcategory_eq_idtoiso q q').
}
do 2 apply maponpaths_2.
apply setcategory_eq_idtoiso.
{
apply maponpaths.
exact (setcategory_eq_idtoiso q q').
}
do 2 apply maponpaths_2.
apply setcategory_eq_idtoiso.
Definition from_eq_cat_of_setcategory
{C₁ C₂ : setcategory}
{F₁ F₂ : C₁ ⟶ C₂}
(p : F₁ = F₂)
{x₁ x₂ : pr1 C₁}
(f : x₁ --> x₂)
: # (pr1 F₁) f
=
idtoiso (maponpaths (λ z, pr11 z x₁) p)
· # (pr1 F₂) f
· idtoiso (maponpaths (λ z, pr11 z x₂) (!p)).
Show proof.