Library UniMath.CategoryTheory.DisplayedCats.Total


Total Categories and Total Functors

Definition and forgetful functor


Section Total_Category.

  Section Total_Category_data.

    Context {C : precategory_data} (D : disp_cat_data C).

    Definition total_category_ob_mor : precategory_ob_mor.
    Show proof.
      exists ( x:C, D x).
      intros xx yy.
      exact ( (f : pr1 xx --> pr1 yy), pr2 xx -->[f] pr2 yy).

    Definition total_category_id_comp : precategory_id_comp (total_category_ob_mor).
    Show proof.
      apply tpair; simpl.
      - intros. exists (identity _). apply id_disp.
      - intros xx yy zz ff gg.
        exists (pr1 ff · pr1 gg).
        exact (pr2 ff ;; pr2 gg).

    Definition total_category_data : precategory_data
      := (total_category_ob_mor ,, total_category_id_comp).

  End Total_Category_data.

  Lemma total_category_is_precat {C : category} (D : disp_cat C) :
    is_precategory (total_category_data D).
  Show proof.
    apply is_precategory_one_assoc_to_two.
    repeat apply tpair; simpl.
    - intros xx yy ff; cbn.
      use total2_paths_f; simpl.
      apply id_left.
      eapply pathscomp0.
      apply maponpaths, id_left_disp.
      apply transportfbinv.
    - intros xx yy ff; cbn.
      use total2_paths_f; simpl.
      apply id_right.
      eapply pathscomp0.
      apply maponpaths, id_right_disp.
      apply transportfbinv.
    - intros xx yy zz ww ff gg hh.
      use total2_paths_f; simpl.
      apply assoc.
      eapply pathscomp0.
      apply maponpaths, assoc_disp.
      apply transportfbinv.

  Definition total_precategory {C : category} (D : disp_cat C) : precategory :=
    (total_category_data D ,, total_category_is_precat D).

  Lemma total_category_has_homsets {C : category} (D : disp_cat C) :
    has_homsets (total_category_data D).
  Show proof.
    intros ? ?; simpl. apply isaset_total2. apply homset_property.
    intros; apply homsets_disp.

  Definition total_category {C : category} (D : disp_cat C) : category :=
    (total_precategory D,, total_category_has_homsets D).

  Definition pr1_category_data {C : category} (D : disp_cat C) :
    functor_data (total_category D) C.
  Show proof.
    exists pr1.
    intros a b; exact pr1.

  Lemma pr1_category_is_functor {C : category} (D : disp_cat C) :
    is_functor (pr1_category_data D).
  Show proof.
    apply tpair.
    - intros x; apply idpath.
    - intros x y z f g; apply idpath.

  Definition pr1_category {C : category} (D : disp_cat C) :
    functor (total_category D) C :=
    make_functor (pr1_category_data D) (pr1_category_is_functor D).

  Lemma full_pr1_category {C : category} (D : disp_cat C)
        (H : (a b : total_category D) (x : C pr1 a, pr1 b ), ( pr2 a -->[ x] pr2 b ))
    : full (pr1_category D).
  Show proof.
    intros ? ?.
    use pr1_issurjective.
    apply H.

  Lemma faithful_pr1_category {C : category} (D : disp_cat C)
        (H : (a b : total_precategory D) (x : C pr1 a, pr1 b ), isaprop (pr2 a -->[ x] pr2 b))
    : faithful (pr1_category D).
  Show proof.
    intros ? ?.
    apply isinclpr1, H.

  Definition fully_faithful_pr1_category {C : category} (D : disp_cat C)
             (H : (a b : total_precategory D) (x : C pr1 a, pr1 b ), iscontr (pr2 a -->[ x] pr2 b))
    : fully_faithful (pr1_category D).
  Show proof.
    intros ? ?.
    apply isweqpr1, H.

  Lemma mor_eq_total_category_when_locally_prop {C : category} {D : disp_cat C} (loc : locally_propositional D)
    {xx yy : total_precategory D} {ff gg : xx --> yy} : pr1 ff = pr1 gg -> ff = gg.
  Show proof.
    intro Hyp.
    use subtypePath.
    - red; intro; apply loc.
    - exact Hyp.

Isomorphisms and saturation


  Definition is_z_iso_total {C : category} {D : disp_cat C}
             {xx yy : total_category D} (ff : xx --> yy)
             (i : is_z_isomorphism (pr1 ff))
             (fi := pr1 ff,, i)
             (ii : is_z_iso_disp fi (pr2 ff))
    : is_z_isomorphism ff.
  Show proof.
    exists (inv_from_z_iso fi,, pr1 ii).
    abstract (
      refine (total2_paths_f _ _ ,, total2_paths_f _ _);
      [
        exact (maponpaths _ (inv_mor_after_z_iso_disp ii) @ transportfbinv _ _ _) |
        exact (maponpaths _ (z_iso_disp_after_inv_mor ii) @ transportfbinv _ _ _)
      ]
    ).

  Definition inv_from_z_iso_in_total
             {C : category}
             {D : disp_cat C}
             {x y : C}
             {f : x --> y}
             (Hf : is_z_isomorphism f)
             {xx : D x}
             {yy : D y}
             {ff : xx -->[ f ] yy}
             (Hff : is_z_iso_disp (f ,, Hf) ff)
    : pr1 (inv_from_z_iso
             (make_z_iso' _
                (@is_z_iso_total
                   C D
                   (x ,, xx) (y ,, yy)
                   (f ,, ff)
                   Hf
                   Hff)))
      =
        inv_from_z_iso (_,,Hf).
  Show proof.
    apply inv_z_iso_unique'.
    unfold precomp_with ; cbn.
    exact (maponpaths
             pr1
             (z_iso_inv_after_z_iso
                (make_z_iso'
                   _
                   (@is_z_iso_total
                      C D
                      (x ,, xx) (y ,, yy)
                      (f ,, ff)
                      Hf
                      Hff)))).

  Definition is_z_iso_base_from_total {C : category} {D : disp_cat C}
             {xx yy : total_category D} {ff : xx --> yy} (i : is_z_isomorphism ff)
    : is_z_isomorphism (pr1 ff).
  Show proof.
    set (ffi := ff ,, i).
    exists (pr1 (inv_from_z_iso ffi)).
    split.
    - exact (maponpaths pr1 (z_iso_inv_after_z_iso ffi)).
    - exact (maponpaths pr1 (z_iso_after_z_iso_inv ffi)).

  Definition z_iso_base_from_total {C : category} {D : disp_cat C}
             {xx yy : total_category D} (ffi : z_iso xx yy) : z_iso (pr1 xx) (pr1 yy) :=
    _ ,, (is_z_iso_base_from_total (pr2 ffi)).

  Definition inv_z_iso_base_from_total {C : category} {D : disp_cat C}
             {xx yy : total_precategory D} (ffi : z_iso xx yy) :
    inv_from_z_iso (z_iso_base_from_total ffi) = pr1 (inv_from_z_iso ffi).
  Show proof.
    apply pathsinv0, inv_z_iso_unique'. unfold precomp_with.
    exact (maponpaths pr1 (z_iso_inv_after_z_iso ffi)).

  Definition is_z_iso_disp_from_total {C : category} {D : disp_cat C}
             {xx yy : total_precategory D} {ff : xx --> yy} (i : is_z_isomorphism ff) (ffi := ff ,, i) :
    is_z_iso_disp (z_iso_base_from_total (ff,,i)) (pr2 ff).
  Show proof.
    use tpair; [ | split].
    - eapply transportb. apply inv_z_iso_base_from_total.
      exact (pr2 (inv_from_z_iso ffi)).
    - etrans. apply mor_disp_transportf_postwhisker.
      etrans. apply maponpaths, @pathsinv0.
      exact (fiber_paths (!z_iso_after_z_iso_inv ffi)).
      etrans. apply transport_f_f.
      use (toforallpaths _ _ _ _ (id_disp _)).
      unfold transportb; apply maponpaths, homset_property.
    - etrans. apply mor_disp_transportf_prewhisker.
      etrans. apply maponpaths, @pathsinv0.
      exact (fiber_paths (!z_iso_inv_after_z_iso ffi)).
      etrans. apply transport_f_f.
      use (toforallpaths _ _ _ _ (id_disp _)).
      unfold transportb; apply maponpaths, homset_property.

  Definition z_iso_disp_from_total {C : category} {D : disp_cat C}
             {xx yy : total_precategory D} (ff : z_iso xx yy) :
    z_iso_disp (z_iso_base_from_total ff) (pr2 xx) (pr2 yy).
  Show proof.
    exact (_,, is_z_iso_disp_from_total (pr2 ff)).

  Definition total_z_iso {C : category} {D : disp_cat C} {xx yy : total_category D}
             (f : z_iso (pr1 xx) (pr1 yy)) (ff : z_iso_disp f (pr2 xx) (pr2 yy))
    : z_iso xx yy.
  Show proof.
    exists (pr1 f,, pr1 ff).
    apply (is_z_iso_total (pr1 f,, pr1 ff) (pr2 f) (pr2 ff)).

  Lemma inv_mor_total_z_iso {C : category} {D : disp_cat C} {xx yy : total_category D}
        (f : z_iso (pr1 xx) (pr1 yy)) (ff : z_iso_disp f (pr2 xx) (pr2 yy))
    : inv_from_z_iso (total_z_iso f ff)
      = (inv_from_z_iso f,, inv_mor_disp_from_z_iso ff).
  Show proof.
    apply cancel_precomposition_z_iso with (total_z_iso f ff).
    etrans. apply z_iso_inv_after_z_iso. apply pathsinv0.
    use total2_paths_f; cbn.
    - apply z_iso_inv_after_z_iso.
    - etrans. apply maponpaths, inv_mor_after_z_iso_disp.
      apply transportfbinv.

  Definition total_z_iso_equiv_map {C : category} {D : disp_cat C} {xx yy : total_category D}
    : ( f : z_iso (pr1 xx) (pr1 yy), z_iso_disp f (pr2 xx) (pr2 yy))
      -> z_iso xx yy
    := λ ff, total_z_iso (pr1 ff) (pr2 ff).

  Definition total_isweq_z_iso {C : category} {D : disp_cat C} (xx yy : total_category D)
    : isweq (@total_z_iso_equiv_map _ _ xx yy).
  Show proof.
    use isweq_iso.
    - intros ff. exists (z_iso_base_from_total ff). apply z_iso_disp_from_total.
    - intros [f ff]. use total2_paths_f.
      + apply z_iso_eq, idpath.
      + apply eq_z_iso_disp.
        etrans. apply transportf_z_iso_disp.
        simpl pr2. simpl (pr1 (z_iso_disp_from_total _)).
        use (@maponpaths_2 _ _ _ (transportf _) _ (idpath _)).
        apply homset_property.
    - intros f. apply z_iso_eq; simpl.
      destruct f as [[f ff] w]; apply idpath.

  Definition total_z_iso_equiv {C : category} {D : disp_cat C} (xx yy : total_category D)
    : ( f : z_iso (pr1 xx) (pr1 yy), z_iso_disp f (pr2 xx) (pr2 yy))
         z_iso xx yy
    := make_weq _ (total_isweq_z_iso xx yy).

  Lemma is_univalent_total_category {C : category} {D : disp_cat C}
        (CC : is_univalent C) (DD : is_univalent_disp D) :
    is_univalent (total_category D).
  Show proof.
    intros xs ys.
    set (x := pr1 xs). set (xx := pr2 xs).
    set (y := pr1 ys). set (yy := pr2 ys).
    use weqhomot.
    apply (@weqcomp _ ( e : x = y, transportf _ e xx = yy) _).
    apply total2_paths_equiv.
    apply (@weqcomp _ ( e : x = y, z_iso_disp (idtoiso e) xx yy) _).
    apply weqfibtototal.
    intros e. exists (λ ee, idtoiso_disp e ee).
    apply DD.
    apply (@weqcomp _ ( f : z_iso x y, z_iso_disp f xx yy) _).
    use (weqfp (make_weq _ _)). apply CC.
    apply total_z_iso_equiv.
    intros e; destruct e; apply z_iso_eq; cbn.
    apply idpath.

End Total_Category.

Arguments pr1_category [C] D.

Section TotalUnivalent.
  Definition total_univalent_category
             {C : univalent_category}
             (D : disp_univalent_category C)
    : univalent_category.
  Show proof.
    use make_univalent_category.
    - exact (total_category D).
    - exact (is_univalent_total_category (pr2 C) (pr2 D)).
End TotalUnivalent.

Total functors of displayed functors

Section Total_Functors.

  Definition total_functor_data {C' C} {F}
             {D' : disp_cat C'} {D : disp_cat C} (FF : disp_functor F D' D)
    : functor_data (total_category D') (total_category D).
  Show proof.
    use make_functor_data.
    - intros xx. exists (F (pr1 xx)). exact (FF _ (pr2 xx)).
    - intros xx yy ff. exists (# F (pr1 ff))%cat. exact ( FF (pr2 ff)).

  Definition total_functor_axioms {C' C} {F}
             {D' : disp_cat C'} {D : disp_cat C} (FF : disp_functor F D' D)
    : is_functor (total_functor_data FF).
  Show proof.
    split.
    - intros xx; use total2_paths_f.
      apply functor_id.
      etrans. apply maponpaths, disp_functor_id.
      apply transportfbinv.
    - intros xx yy zz ff gg; use total2_paths_f; simpl.
      apply functor_comp.
      etrans. apply maponpaths, disp_functor_comp.
      apply transportfbinv.

  Definition total_functor {C' C} {F}
             {D' : disp_cat C'} {D : disp_cat C} (FF : disp_functor F D' D)
    : functor (total_category D') (total_category D)
    := (total_functor_data FF,, total_functor_axioms FF).

Laws for total fucntors
  Definition total_functor_commute
             {C₁ C₂ : category}
             {F : C₁ C₂}
             {D₁ : disp_cat C₁}
             {D₂ : disp_cat C₂}
             (FF : disp_functor F D₁ D₂)
    : pr1_category D₁ F total_functor FF pr1_category D₂.
  Show proof.
    use make_nat_trans.
    - exact (λ _, identity _).
    - abstract
        (intros ? ? ? ;
         cbn ;
         rewrite id_left, id_right ;
         apply idpath).

  Definition total_functor_commute_z_iso
             {C₁ C₂ : category}
             {F : C₁ C₂}
             {D₁ : disp_cat C₁}
             {D₂ : disp_cat C₂}
             (FF : disp_functor F D₁ D₂)
    : nat_z_iso
        (pr1_category D₁ F)
        (total_functor FF pr1_category D₂).
  Show proof.
    use make_nat_z_iso.
    * exact (total_functor_commute FF).
    * intro.
      apply identity_is_z_iso.

  Definition total_functor_identity
             {C : category}
             (D : disp_cat C)
    : functor_identity (total_category D)
                       
                       total_functor (disp_functor_identity D).
  Show proof.
    use make_nat_trans.
    - exact (λ _, identity _).
    - abstract
        (intros ? ? ? ; simpl ;
         refine (@id_right (total_category _) _ _ _ @ _) ;
         exact (!(@id_left (total_category _) _ _ _))).

  Definition total_functor_comp
             {C₁ C₂ C₃ : category}
             {F : C₁ C₂}
             {G : C₂ C₃}
             {D₁ : disp_cat C₁}
             {D₂ : disp_cat C₂}
             {D₃ : disp_cat C₃}
             (FF : disp_functor F D₁ D₂)
             (GG : disp_functor G D₂ D₃)
    : total_functor FF total_functor GG
                    
                    total_functor (disp_functor_composite FF GG).
  Show proof.
    use make_nat_trans.
    - exact (λ _, identity _).
    - abstract
        (intros x y f ;
         refine (@id_right (total_category _) _ _ _ @ _) ;
         exact (!(@id_left (total_category _) _ _ _))).

End Total_Functors.

Section Total_Nat_Trans.
Total natural transformation
  Definition total_nat_trans
             {C₁ C₂ : category}
             {F G : C₁ C₂}
             {τ : F G}
             {D₁ : disp_cat C₁}
             {D₂ : disp_cat C₂}
             {FF : disp_functor F D₁ D₂}
             {GG : disp_functor G D₁ D₂}
             (ττ : disp_nat_trans τ FF GG)
    : nat_trans (total_functor FF) (total_functor GG).
  Show proof.
    use make_nat_trans.
    - exact (λ x, τ (pr1 x) ,, ττ (pr1 x) (pr2 x)).
    - abstract
        (intros x y f ; cbn ;
         use total2_paths_b ;
         [ exact (nat_trans_ax τ _ _ (pr1 f))
         | exact (disp_nat_trans_ax ττ (pr2 f))]).

End Total_Nat_Trans.