Library UniMath.CategoryTheory.Limits.Coproducts
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Univalence.
Require Import UniMath.CategoryTheory.FunctorCategory.
Require Import UniMath.CategoryTheory.ProductCategory.
Require Import UniMath.CategoryTheory.Limits.Graphs.Colimits.
Require Import UniMath.CategoryTheory.whiskering.
Local Open Scope cat.
Section coproduct_def.
Context (I : UU) (C : category).
Definition isCoproduct (a : I -> C) (co : C)
(ia : ∏ i, a i --> co) :=
∏ (c : C) (f : ∏ i, a i --> c),
∃! (g : co --> c), ∏ i, ia i · g = f i.
Definition Coproduct (a : I -> C) :=
∑ coia : (∑ co : C, ∏ i, a i --> co),
isCoproduct a (pr1 coia) (pr2 coia).
Definition Coproducts := ∏ (a : I -> C), Coproduct a.
Definition hasCoproducts := ∏ (a : I -> C), ∥ Coproduct a ∥.
Definition CoproductObject {a : I -> C} (CC : Coproduct a) : C := pr1 (pr1 CC).
Coercion CoproductObject : Coproduct >-> ob.
Definition CoproductIn {a : I -> C} (CC : Coproduct a): ∏ i, a i --> CoproductObject CC :=
pr2 (pr1 CC).
Definition isCoproduct_Coproduct {a : I -> C} (CC : Coproduct a) :
isCoproduct a (CoproductObject CC) (CoproductIn CC).
Show proof.
Definition CoproductArrow {a : I -> C} (CC : Coproduct a) {c : C} (f : ∏ i, a i --> c) :
CoproductObject CC --> c.
Show proof.
Lemma CoproductInCommutes (a : I -> C) (CC : Coproduct a) :
∏ (c : C) (f : ∏ i, a i --> c) i, CoproductIn CC i · CoproductArrow CC f = f i.
Show proof.
Lemma CoproductIn_idtoiso {i1 i2 : I} (a : I -> C) (CC : Coproduct a)
(e : i1 = i2) :
idtoiso (maponpaths a e) · CoproductIn CC i2 = CoproductIn CC i1.
Show proof.
Lemma CoproductArrowUnique (a : I -> C) (CC : Coproduct a) (x : C)
(f : ∏ i, a i --> x) (k : CoproductObject CC --> x)
(Hk : ∏ i, CoproductIn CC i · k = f i) :
k = CoproductArrow CC f.
Show proof.
Lemma CoproductArrowEta (a : I -> C) (CC : Coproduct a) (x : C)
(f : CoproductObject CC --> x) :
f = CoproductArrow CC (λ i, CoproductIn CC i · f).
Show proof.
Proposition CoproductArrow_eq
{d : I → C}
(z : C)
(x : Coproduct d)
(f g : x --> z)
(p : ∏ (i : I), CoproductIn x i · f = CoproductIn x i · g)
: f = g.
Show proof.
Definition CoproductOfArrows {a : I -> C} (CCab : Coproduct a) {c : I -> C}
(CCcd : Coproduct c) (f : ∏ i, a i --> c i) :
CoproductObject CCab --> CoproductObject CCcd :=
CoproductArrow CCab (λ i, f i · CoproductIn CCcd i).
Lemma CoproductOfArrowsIn {a : I -> C} (CCab : Coproduct a) {c : I -> C}
(CCcd : Coproduct c) (f : ∏ i, a i --> c i) :
∏ i, CoproductIn CCab i · CoproductOfArrows CCab CCcd f = f i · CoproductIn CCcd i.
Show proof.
Definition make_Coproduct (a : I -> C) (c : C) (f : ∏ i, a i --> c) :
isCoproduct _ _ f → Coproduct a.
Show proof.
Definition make_isCoproduct (hsC : has_homsets C) (a : I -> C) (co : C)
(f : ∏ i, a i --> co) : (∏ (c : C) (g : ∏ i, a i --> c),
∃! k : C ⟦co, c⟧, ∏ i, f i · k = g i)
→ isCoproduct a co f.
Show proof.
Lemma precompWithCoproductArrow {a : I -> C} (CCab : Coproduct a) {c : I -> C}
(CCcd : Coproduct c) (f : ∏ i, a i --> c i)
{x : C} (k : ∏ i, c i --> x) :
CoproductOfArrows CCab CCcd f · CoproductArrow CCcd k =
CoproductArrow CCab (λ i, f i · k i).
Show proof.
Lemma postcompWithCoproductArrow {a : I -> C} (CCab : Coproduct a) {c : C}
(f : ∏ i, a i --> c) {x : C} (k : c --> x) :
CoproductArrow CCab f · k = CoproductArrow CCab (λ i, f i · k).
Show proof.
Lemma Coproduct_endo_is_identity (a : I -> C) (CC : Coproduct a)
(k : CoproductObject CC --> CoproductObject CC)
(H1 : ∏ i, CoproductIn CC i · k = CoproductIn CC i)
: identity _ = k.
Show proof.
End coproduct_def.
Section Coproducts.
Context (I : UU) (C : category) (CC : Coproducts I C).
Definition CoproductOfArrows_comp (a b c : I -> C)
(f : ∏ i, a i --> b i) (g : ∏ i, b i --> c i) :
CoproductOfArrows _ _ _ _ f · CoproductOfArrows _ _ (CC _) (CC _) g
= CoproductOfArrows _ _ (CC _) (CC _)(λ i, f i · g i).
Show proof.
End Coproducts.
Section functors.
Definition coproduct_functor_data (I : UU) {C : category}
(PC : Coproducts I C) : functor_data (power_category I C) C.
Show proof.
Context (I : UU) (C : category).
Definition isCoproduct (a : I -> C) (co : C)
(ia : ∏ i, a i --> co) :=
∏ (c : C) (f : ∏ i, a i --> c),
∃! (g : co --> c), ∏ i, ia i · g = f i.
Definition Coproduct (a : I -> C) :=
∑ coia : (∑ co : C, ∏ i, a i --> co),
isCoproduct a (pr1 coia) (pr2 coia).
Definition Coproducts := ∏ (a : I -> C), Coproduct a.
Definition hasCoproducts := ∏ (a : I -> C), ∥ Coproduct a ∥.
Definition CoproductObject {a : I -> C} (CC : Coproduct a) : C := pr1 (pr1 CC).
Coercion CoproductObject : Coproduct >-> ob.
Definition CoproductIn {a : I -> C} (CC : Coproduct a): ∏ i, a i --> CoproductObject CC :=
pr2 (pr1 CC).
Definition isCoproduct_Coproduct {a : I -> C} (CC : Coproduct a) :
isCoproduct a (CoproductObject CC) (CoproductIn CC).
Show proof.
Definition CoproductArrow {a : I -> C} (CC : Coproduct a) {c : C} (f : ∏ i, a i --> c) :
CoproductObject CC --> c.
Show proof.
Lemma CoproductInCommutes (a : I -> C) (CC : Coproduct a) :
∏ (c : C) (f : ∏ i, a i --> c) i, CoproductIn CC i · CoproductArrow CC f = f i.
Show proof.
Lemma CoproductIn_idtoiso {i1 i2 : I} (a : I -> C) (CC : Coproduct a)
(e : i1 = i2) :
idtoiso (maponpaths a e) · CoproductIn CC i2 = CoproductIn CC i1.
Show proof.
Lemma CoproductArrowUnique (a : I -> C) (CC : Coproduct a) (x : C)
(f : ∏ i, a i --> x) (k : CoproductObject CC --> x)
(Hk : ∏ i, CoproductIn CC i · k = f i) :
k = CoproductArrow CC f.
Show proof.
Lemma CoproductArrowEta (a : I -> C) (CC : Coproduct a) (x : C)
(f : CoproductObject CC --> x) :
f = CoproductArrow CC (λ i, CoproductIn CC i · f).
Show proof.
Proposition CoproductArrow_eq
{d : I → C}
(z : C)
(x : Coproduct d)
(f g : x --> z)
(p : ∏ (i : I), CoproductIn x i · f = CoproductIn x i · g)
: f = g.
Show proof.
refine (CoproductArrowEta _ _ _ _ @ _ @ !(CoproductArrowEta _ _ _ _)).
apply maponpaths.
use funextsec.
exact p.
apply maponpaths.
use funextsec.
exact p.
Definition CoproductOfArrows {a : I -> C} (CCab : Coproduct a) {c : I -> C}
(CCcd : Coproduct c) (f : ∏ i, a i --> c i) :
CoproductObject CCab --> CoproductObject CCcd :=
CoproductArrow CCab (λ i, f i · CoproductIn CCcd i).
Lemma CoproductOfArrowsIn {a : I -> C} (CCab : Coproduct a) {c : I -> C}
(CCcd : Coproduct c) (f : ∏ i, a i --> c i) :
∏ i, CoproductIn CCab i · CoproductOfArrows CCab CCcd f = f i · CoproductIn CCcd i.
Show proof.
Definition make_Coproduct (a : I -> C) (c : C) (f : ∏ i, a i --> c) :
isCoproduct _ _ f → Coproduct a.
Show proof.
Definition make_isCoproduct (hsC : has_homsets C) (a : I -> C) (co : C)
(f : ∏ i, a i --> co) : (∏ (c : C) (g : ∏ i, a i --> c),
∃! k : C ⟦co, c⟧, ∏ i, f i · k = g i)
→ isCoproduct a co f.
Show proof.
intros H c cc.
apply H.
apply H.
Lemma precompWithCoproductArrow {a : I -> C} (CCab : Coproduct a) {c : I -> C}
(CCcd : Coproduct c) (f : ∏ i, a i --> c i)
{x : C} (k : ∏ i, c i --> x) :
CoproductOfArrows CCab CCcd f · CoproductArrow CCcd k =
CoproductArrow CCab (λ i, f i · k i).
Show proof.
apply CoproductArrowUnique; intro i.
now rewrite assoc, CoproductOfArrowsIn, <- assoc, CoproductInCommutes.
now rewrite assoc, CoproductOfArrowsIn, <- assoc, CoproductInCommutes.
Lemma postcompWithCoproductArrow {a : I -> C} (CCab : Coproduct a) {c : C}
(f : ∏ i, a i --> c) {x : C} (k : c --> x) :
CoproductArrow CCab f · k = CoproductArrow CCab (λ i, f i · k).
Show proof.
Lemma Coproduct_endo_is_identity (a : I -> C) (CC : Coproduct a)
(k : CoproductObject CC --> CoproductObject CC)
(H1 : ∏ i, CoproductIn CC i · k = CoproductIn CC i)
: identity _ = k.
Show proof.
apply pathsinv0.
eapply pathscomp0; [apply CoproductArrowEta|].
apply pathsinv0, CoproductArrowUnique; intro i; apply pathsinv0.
now rewrite id_right, H1.
eapply pathscomp0; [apply CoproductArrowEta|].
apply pathsinv0, CoproductArrowUnique; intro i; apply pathsinv0.
now rewrite id_right, H1.
End coproduct_def.
Section Coproducts.
Context (I : UU) (C : category) (CC : Coproducts I C).
Definition CoproductOfArrows_comp (a b c : I -> C)
(f : ∏ i, a i --> b i) (g : ∏ i, b i --> c i) :
CoproductOfArrows _ _ _ _ f · CoproductOfArrows _ _ (CC _) (CC _) g
= CoproductOfArrows _ _ (CC _) (CC _)(λ i, f i · g i).
Show proof.
apply CoproductArrowUnique; intro i.
rewrite assoc, CoproductOfArrowsIn.
now rewrite <- assoc, CoproductOfArrowsIn, assoc.
rewrite assoc, CoproductOfArrowsIn.
now rewrite <- assoc, CoproductOfArrowsIn, assoc.
End Coproducts.
Section functors.
Definition coproduct_functor_data (I : UU) {C : category}
(PC : Coproducts I C) : functor_data (power_category I C) C.
Show proof.
use tpair.
- intros p.
apply (CoproductObject _ _ (PC p)).
- simpl; intros p q f.
apply (CoproductOfArrows _ _ _ _ f).
- intros p.
apply (CoproductObject _ _ (PC p)).
- simpl; intros p q f.
apply (CoproductOfArrows _ _ _ _ f).
Definition coproduct_functor (I : UU) {C : category}
(PC : Coproducts I C) : functor (power_category I C) C.
Show proof.
End functors.
Definition coproduct_of_functors_alt_old (I : UU) {C D : category}
(HD : Coproducts I D) (F : I -> functor C D) : functor C D :=
functor_composite (delta_functor I C)
(functor_composite (family_functor _ F)
(coproduct_functor _ HD)).
(PC : Coproducts I C) : functor (power_category I C) C.
Show proof.
apply (tpair _ (coproduct_functor_data _ PC)).
abstract (split;
[intro x; simpl; apply pathsinv0, Coproduct_endo_is_identity;
now intro i; rewrite CoproductOfArrowsIn, id_left
| now intros x y z f g; simpl; rewrite CoproductOfArrows_comp]).
abstract (split;
[intro x; simpl; apply pathsinv0, Coproduct_endo_is_identity;
now intro i; rewrite CoproductOfArrowsIn, id_left
| now intros x y z f g; simpl; rewrite CoproductOfArrows_comp]).
End functors.
Definition coproduct_of_functors_alt_old (I : UU) {C D : category}
(HD : Coproducts I D) (F : I -> functor C D) : functor C D :=
functor_composite (delta_functor I C)
(functor_composite (family_functor _ F)
(coproduct_functor _ HD)).
The coproduct of a family of functors
Definition coproduct_of_functors_alt (I : UU) {C D : category}
(HD : Coproducts I D) (F : ∏ (i : I), functor C D)
:= functor_composite (tuple_functor F) (coproduct_functor _ HD).
(HD : Coproducts I D) (F : ∏ (i : I), functor C D)
:= functor_composite (tuple_functor F) (coproduct_functor _ HD).
Section def_functor_pointwise_coprod.
Context (I : UU) (C D : category) (HD : Coproducts I D).
Section coproduct_of_functors.
Context (F : I -> functor C D).
Definition coproduct_of_functors_ob (c : C) : D
:= CoproductObject _ _ (HD (λ i, F i c)).
Definition coproduct_of_functors_mor (c c' : C) (f : c --> c')
: coproduct_of_functors_ob c --> coproduct_of_functors_ob c' :=
CoproductOfArrows _ _ _ _ (λ i, # (F i) f).
Definition coproduct_of_functors_data : functor_data C D.
Show proof.
Lemma is_functor_coproduct_of_functors_data :
is_functor coproduct_of_functors_data.
Show proof.
Definition coproduct_of_functors : functor C D :=
tpair _ _ is_functor_coproduct_of_functors_data.
Lemma coproduct_of_functors_alt_old_eq_coproduct_of_functors :
coproduct_of_functors_alt_old _ HD F = coproduct_of_functors.
Show proof.
Lemma coproduct_of_functors_alt_eq_coproduct_of_functors :
coproduct_of_functors_alt _ HD F = coproduct_of_functors.
Show proof.
Definition coproduct_nat_trans_in_data i (c : C) :
D ⟦ (F i) c, coproduct_of_functors c ⟧ :=
CoproductIn _ _ (HD (λ j, (F j) c)) i.
Lemma is_nat_trans_coproduct_nat_trans_in_data i :
is_nat_trans _ _ (coproduct_nat_trans_in_data i).
Show proof.
Definition coproduct_nat_trans_in i : nat_trans (F i) coproduct_of_functors :=
tpair _ _ (is_nat_trans_coproduct_nat_trans_in_data i).
Section vertex.
Context (A : functor C D) (f : ∏ i, nat_trans (F i) A).
Definition coproduct_nat_trans_data c : coproduct_of_functors c --> A c
:= CoproductArrow _ _ _ (λ i, f i c).
Lemma is_nat_trans_coproduct_nat_trans_data :
is_nat_trans _ _ coproduct_nat_trans_data.
Show proof.
Definition coproduct_nat_trans : nat_trans coproduct_of_functors A
:= tpair _ _ is_nat_trans_coproduct_nat_trans_data.
End vertex.
Definition functor_precat_coproduct_cocone
: Coproduct I [C, D] F.
Show proof.
End coproduct_of_functors.
Definition Coproducts_functor_precat : Coproducts I [C, D].
Show proof.
End def_functor_pointwise_coprod.
Context (I : UU) (C D : category) (HD : Coproducts I D).
Section coproduct_of_functors.
Context (F : I -> functor C D).
Definition coproduct_of_functors_ob (c : C) : D
:= CoproductObject _ _ (HD (λ i, F i c)).
Definition coproduct_of_functors_mor (c c' : C) (f : c --> c')
: coproduct_of_functors_ob c --> coproduct_of_functors_ob c' :=
CoproductOfArrows _ _ _ _ (λ i, # (F i) f).
Definition coproduct_of_functors_data : functor_data C D.
Show proof.
Lemma is_functor_coproduct_of_functors_data :
is_functor coproduct_of_functors_data.
Show proof.
split; simpl; intros.
- unfold functor_idax; intros; simpl in *.
apply pathsinv0.
apply Coproduct_endo_is_identity; intro i.
unfold coproduct_of_functors_mor.
eapply pathscomp0; [apply (CoproductOfArrowsIn _ _ (HD (λ i, (F i) a)))|].
now simpl; rewrite functor_id, id_left.
- unfold functor_compax; simpl; unfold coproduct_of_functors_mor.
intros; simpl in *.
apply pathsinv0.
eapply pathscomp0.
apply CoproductOfArrows_comp.
apply maponpaths, funextsec; intro i.
now rewrite functor_comp.
- unfold functor_idax; intros; simpl in *.
apply pathsinv0.
apply Coproduct_endo_is_identity; intro i.
unfold coproduct_of_functors_mor.
eapply pathscomp0; [apply (CoproductOfArrowsIn _ _ (HD (λ i, (F i) a)))|].
now simpl; rewrite functor_id, id_left.
- unfold functor_compax; simpl; unfold coproduct_of_functors_mor.
intros; simpl in *.
apply pathsinv0.
eapply pathscomp0.
apply CoproductOfArrows_comp.
apply maponpaths, funextsec; intro i.
now rewrite functor_comp.
Definition coproduct_of_functors : functor C D :=
tpair _ _ is_functor_coproduct_of_functors_data.
Lemma coproduct_of_functors_alt_old_eq_coproduct_of_functors :
coproduct_of_functors_alt_old _ HD F = coproduct_of_functors.
Show proof.
Lemma coproduct_of_functors_alt_eq_coproduct_of_functors :
coproduct_of_functors_alt _ HD F = coproduct_of_functors.
Show proof.
Definition coproduct_nat_trans_in_data i (c : C) :
D ⟦ (F i) c, coproduct_of_functors c ⟧ :=
CoproductIn _ _ (HD (λ j, (F j) c)) i.
Lemma is_nat_trans_coproduct_nat_trans_in_data i :
is_nat_trans _ _ (coproduct_nat_trans_in_data i).
Show proof.
intros c c' f; apply pathsinv0.
now eapply pathscomp0;[apply (CoproductOfArrowsIn I _ (HD (λ i, (F i) c)))|].
now eapply pathscomp0;[apply (CoproductOfArrowsIn I _ (HD (λ i, (F i) c)))|].
Definition coproduct_nat_trans_in i : nat_trans (F i) coproduct_of_functors :=
tpair _ _ (is_nat_trans_coproduct_nat_trans_in_data i).
Section vertex.
Context (A : functor C D) (f : ∏ i, nat_trans (F i) A).
Definition coproduct_nat_trans_data c : coproduct_of_functors c --> A c
:= CoproductArrow _ _ _ (λ i, f i c).
Lemma is_nat_trans_coproduct_nat_trans_data :
is_nat_trans _ _ coproduct_nat_trans_data.
Show proof.
intros a b k; simpl.
eapply pathscomp0.
apply (precompWithCoproductArrow I D (HD (λ i : I, (F i) a)) (HD (λ i : I, (F i) b))).
apply pathsinv0.
eapply pathscomp0; [apply postcompWithCoproductArrow|].
apply maponpaths, funextsec; intro i.
now rewrite (nat_trans_ax (f i)).
eapply pathscomp0.
apply (precompWithCoproductArrow I D (HD (λ i : I, (F i) a)) (HD (λ i : I, (F i) b))).
apply pathsinv0.
eapply pathscomp0; [apply postcompWithCoproductArrow|].
apply maponpaths, funextsec; intro i.
now rewrite (nat_trans_ax (f i)).
Definition coproduct_nat_trans : nat_trans coproduct_of_functors A
:= tpair _ _ is_nat_trans_coproduct_nat_trans_data.
End vertex.
Definition functor_precat_coproduct_cocone
: Coproduct I [C, D] F.
Show proof.
use make_Coproduct.
- apply coproduct_of_functors.
- apply coproduct_nat_trans_in.
- use make_isCoproduct.
+ apply functor_category_has_homsets.
+ intros A f.
use tpair.
* apply (tpair _ (coproduct_nat_trans A f)).
abstract (intro i; apply (nat_trans_eq D); intro c;
apply (CoproductInCommutes I D _ (HD (λ j, (F j) c)))).
* abstract (
intro t; apply subtypePath; simpl;
[intro; apply impred; intro; apply (isaset_nat_trans D)|];
apply (nat_trans_eq D); intro c;
apply CoproductArrowUnique; intro i;
apply (nat_trans_eq_pointwise (pr2 t i))).
- apply coproduct_of_functors.
- apply coproduct_nat_trans_in.
- use make_isCoproduct.
+ apply functor_category_has_homsets.
+ intros A f.
use tpair.
* apply (tpair _ (coproduct_nat_trans A f)).
abstract (intro i; apply (nat_trans_eq D); intro c;
apply (CoproductInCommutes I D _ (HD (λ j, (F j) c)))).
* abstract (
intro t; apply subtypePath; simpl;
[intro; apply impred; intro; apply (isaset_nat_trans D)|];
apply (nat_trans_eq D); intro c;
apply CoproductArrowUnique; intro i;
apply (nat_trans_eq_pointwise (pr2 t i))).
End coproduct_of_functors.
Definition Coproducts_functor_precat : Coproducts I [C, D].
Show proof.
End def_functor_pointwise_coprod.
Section coproducts_from_colimits.
Context (I : UU) (C : category).
Definition I_graph : graph := (I,,λ _ _,empty).
Definition coproducts_diagram (F : I → C) : diagram I_graph C.
Show proof.
Definition Coproducts_cocone c (F : I → C) (H : ∏ i, F i --> c) :
cocone (coproducts_diagram F) c.
Show proof.
Lemma Coproducts_from_Colims : Colims_of_shape I_graph C -> Coproducts I C.
Show proof.
End coproducts_from_colimits.
Section DistributionThroughFunctor.
Context {I : UU} {C D : category}
(CPC : Coproducts I C) (CPD : Coproducts I D) (F : functor C D).
Definition coprod_antidistributor (cs : power_category I C):
CPD (fun i => F (cs i)) --> F (CPC cs).
Show proof.
Lemma coprod_antidistributor_nat (cs1 cs2 : power_category I C) (g : power_category I C ⟦ cs1, cs2 ⟧) :
coprod_antidistributor cs1 · #F (#(coproduct_functor I CPC) g) =
#(coproduct_functor I CPD) (#(family_functor I (fun _ => F)) g) · coprod_antidistributor cs2.
Show proof.
Context (I : UU) (C : category).
Definition I_graph : graph := (I,,λ _ _,empty).
Definition coproducts_diagram (F : I → C) : diagram I_graph C.
Show proof.
exists F.
abstract (intros u v e; induction e).
abstract (intros u v e; induction e).
Definition Coproducts_cocone c (F : I → C) (H : ∏ i, F i --> c) :
cocone (coproducts_diagram F) c.
Show proof.
Lemma Coproducts_from_Colims : Colims_of_shape I_graph C -> Coproducts I C.
Show proof.
intros H F.
set (HF := H (coproducts_diagram F)).
use make_Coproduct.
+ apply (colim HF).
+ intros i; apply (colimIn HF).
+ apply (make_isCoproduct _ _ C); intros c Fic.
use unique_exists.
- now apply colimArrow, Coproducts_cocone.
- abstract (simpl; intro i; apply (colimArrowCommutes HF)).
- abstract (intros y; apply impred; intro i; apply C).
- abstract (intros f Hf; apply colimArrowUnique; simpl in *; intros i; apply Hf).
set (HF := H (coproducts_diagram F)).
use make_Coproduct.
+ apply (colim HF).
+ intros i; apply (colimIn HF).
+ apply (make_isCoproduct _ _ C); intros c Fic.
use unique_exists.
- now apply colimArrow, Coproducts_cocone.
- abstract (simpl; intro i; apply (colimArrowCommutes HF)).
- abstract (intros y; apply impred; intro i; apply C).
- abstract (intros f Hf; apply colimArrowUnique; simpl in *; intros i; apply Hf).
End coproducts_from_colimits.
Section DistributionThroughFunctor.
Context {I : UU} {C D : category}
(CPC : Coproducts I C) (CPD : Coproducts I D) (F : functor C D).
Definition coprod_antidistributor (cs : power_category I C):
CPD (fun i => F (cs i)) --> F (CPC cs).
Show proof.
Lemma coprod_antidistributor_nat (cs1 cs2 : power_category I C) (g : power_category I C ⟦ cs1, cs2 ⟧) :
coprod_antidistributor cs1 · #F (#(coproduct_functor I CPC) g) =
#(coproduct_functor I CPD) (#(family_functor I (fun _ => F)) g) · coprod_antidistributor cs2.
Show proof.
etrans.
{ apply postcompWithCoproductArrow. }
etrans.
2: { apply pathsinv0, precompWithCoproductArrow. }
apply maponpaths.
apply funextsec; intro i.
etrans.
{ apply pathsinv0, functor_comp. }
etrans.
2: { cbn. apply functor_comp. }
apply maponpaths.
apply CoproductInCommutes.
{ apply postcompWithCoproductArrow. }
etrans.
2: { apply pathsinv0, precompWithCoproductArrow. }
apply maponpaths.
apply funextsec; intro i.
etrans.
{ apply pathsinv0, functor_comp. }
etrans.
2: { cbn. apply functor_comp. }
apply maponpaths.
apply CoproductInCommutes.
axiomatize extra requirements
Definition coprod_distributor_data : UU := ∏ (cs : power_category I C),
F (CPC cs) --> CPD (fun i => F (cs i)).
Identity Coercion coprod_distributor_data_funclass: coprod_distributor_data >-> Funclass.
Definition coprod_distributor_iso_law (δ : coprod_distributor_data) : UU :=
∏ (cs : power_category I C), is_inverse_in_precat (δ cs) (coprod_antidistributor cs).
Definition coprod_distributor : UU := ∑ δ : coprod_distributor_data, coprod_distributor_iso_law δ.
Definition coprod_distributor_to_data (δ : coprod_distributor) : coprod_distributor_data := pr1 δ.
Coercion coprod_distributor_to_data : coprod_distributor >-> coprod_distributor_data.
End DistributionThroughFunctor.
Section DistributionForPrecompositionFunctor.
Context {I : UU} {A B C : category} (CPC : Coproducts I C) (H : functor A B).
Let CPAC : Coproducts I [A,C] := Coproducts_functor_precat I A C CPC.
Let CPBC : Coproducts I [B,C] := Coproducts_functor_precat I B C CPC.
Let precomp : functor [B,C] [A,C] := pre_composition_functor A B C H.
Definition precomp_coprod_distributor_data : coprod_distributor_data CPBC CPAC precomp.
Show proof.
Lemma precomp_coprod_distributor_law :
coprod_distributor_iso_law _ _ _ precomp_coprod_distributor_data.
Show proof.
intros Gs.
split.
- apply (nat_trans_eq C).
intro c.
cbn.
rewrite id_left.
apply pathsinv0, Coproduct_endo_is_identity.
intro i.
unfold coproduct_nat_trans_data.
cbn in Gs.
apply (CoproductInCommutes I C (λ i0 : I, Gs i0 (H c)) (CPC _) _
(λ i0 : I, coproduct_nat_trans_in_data I B C CPC Gs i0 (H c)) i).
- etrans.
{ apply postcompWithCoproductArrow. }
etrans.
2: { apply pathsinv0, CoproductArrowEta. }
apply maponpaths; apply funextsec; intro i;
(rewrite id_right; apply (nat_trans_eq C); intro c; apply id_right).
split.
- apply (nat_trans_eq C).
intro c.
cbn.
rewrite id_left.
apply pathsinv0, Coproduct_endo_is_identity.
intro i.
unfold coproduct_nat_trans_data.
cbn in Gs.
apply (CoproductInCommutes I C (λ i0 : I, Gs i0 (H c)) (CPC _) _
(λ i0 : I, coproduct_nat_trans_in_data I B C CPC Gs i0 (H c)) i).
- etrans.
{ apply postcompWithCoproductArrow. }
etrans.
2: { apply pathsinv0, CoproductArrowEta. }
apply maponpaths; apply funextsec; intro i;
(rewrite id_right; apply (nat_trans_eq C); intro c; apply id_right).
Definition precomp_coprod_distributor : coprod_distributor CPBC CPAC precomp :=
_,,precomp_coprod_distributor_law.
End DistributionForPrecompositionFunctor.
Coproducts are unique
Definition eq_Coproduct
{C : category}
{J : UU}
{D : J → C}
(coprod₁ coprod₂ : Coproduct J C D)
(q : CoproductObject _ _ coprod₁ = CoproductObject _ _ coprod₂)
(e : ∏ (j : J),
CoproductIn _ _ coprod₁ j
=
CoproductIn _ _ coprod₂ j · idtoiso (!q))
: coprod₁ = coprod₂.
Show proof.
Definition z_iso_between_Coproduct
{C : category}
{J : UU}
{D : J → C}
(coprod₁ coprod₂ : Coproduct J C D)
: z_iso coprod₁ coprod₂.
Show proof.
Definition isaprop_Coproduct
{C : category}
(HC : is_univalent C)
(J : UU)
(D : J → C)
: isaprop (Coproduct J C D).
Show proof.
Section Coproduct_different_indexers.
Definition CoproductOfArrowsInclusion {I J : UU} {C : category}
(incl : I -> J) {a : I -> C} (CCab : Coproduct _ _ a) {c : J -> C}
(CCcd : Coproduct _ _ c) (f : ∏ i, a i --> c (incl i)) :
CoproductObject _ _ CCab --> CoproductObject _ _ CCcd :=
CoproductArrow _ _ CCab (λ i, f i · CoproductIn _ _ CCcd (incl i)).
Definition CoproductOfArrows' (I : UU) (C : category)
{a : I -> C} (CCab : Coproduct _ _ a) {c : I -> C}
(CCcd : Coproduct _ _ c) (f : ∏ i, a i --> c i) :
CoproductObject _ _ CCab --> CoproductObject _ _ CCcd :=
CoproductOfArrowsInclusion (idfun I) CCab CCcd f.
Lemma CoproductOfArrowsInclusionIn {I J : UU} {C : category}
(incl : I -> J) {a : I -> C} (CCab : Coproduct _ _ a) {c : J -> C}
(CCcd : Coproduct _ _ c) (f : ∏ i, a i --> c (incl i)) :
∏ i, CoproductIn _ _ CCab i · CoproductOfArrowsInclusion incl CCab CCcd f = f i · CoproductIn _ _ CCcd (incl i).
Show proof.
Lemma CoproductOfArrows'In (I : UU) (C : category)
{a : I -> C} (CCab : Coproduct _ _ a) {c : I -> C}
(CCcd : Coproduct _ _ c) (f : ∏ i, a i --> c i) :
∏ i, CoproductIn _ _ CCab i · CoproductOfArrows' _ _ CCab CCcd f = f i · CoproductIn _ _ CCcd i.
Show proof.
Lemma precompWithCoproductArrowInclusion {I J : UU} {C : category}
(incl : I -> J) {a : I -> C} (CCab : Coproduct _ _ a) {c : J -> C}
(CCcd : Coproduct _ _ c) (f : ∏ i, a i --> c (incl i))
{x : C} (k : ∏ i, c i --> x) :
CoproductOfArrowsInclusion incl CCab CCcd f · CoproductArrow _ _ CCcd k =
CoproductArrow _ _ CCab (λ i, f i · k (incl i)).
Show proof.
Lemma precompWithCoproductArrow' (I : UU) (C : category)
{a : I -> C} (CCab : Coproduct _ _ a) {c : I -> C}
(CCcd : Coproduct _ _ c) (f : ∏ i, a i --> c i)
{x : C} (k : ∏ i, c i --> x) :
CoproductOfArrows' _ _ CCab CCcd f · CoproductArrow _ _ CCcd k =
CoproductArrow _ _ CCab (λ i, f i · k i).
Show proof.
Definition CoproductOfArrowsInclusion_comp {I J K: UU} {C : category}
{a : I -> C} {b : J -> C} {c : K -> C}
(CCI : Coproducts I C) (CCJ : Coproducts J C) (CCK : Coproducts K C)
{inclI : I -> J} {inclJ : J -> K}
(f : ∏ i, a i --> b (inclI i)) (g : ∏ j, b j --> c (inclJ j)) :
CoproductOfArrowsInclusion inclI (CCI _) (CCJ _) f ·
CoproductOfArrowsInclusion inclJ (CCJ _) (CCK _) g
= CoproductOfArrowsInclusion (λ i, inclJ (inclI i)) (CCI _) (CCK _) (λ i, f i · g (inclI i)).
Show proof.
Definition CoproductOfArrows'_comp (I : UU) (C : category) (CC : Coproducts I C)
(a b c : I -> C) (f : ∏ i, a i --> b i) (g : ∏ i, b i --> c i) :
CoproductOfArrows' _ _ _ _ f · CoproductOfArrows' _ _ (CC _) (CC _) g
= CoproductOfArrows' _ _ (CC _) (CC _)(λ i, f i · g i).
Show proof.
End Coproduct_different_indexers.
{C : category}
{J : UU}
{D : J → C}
(coprod₁ coprod₂ : Coproduct J C D)
(q : CoproductObject _ _ coprod₁ = CoproductObject _ _ coprod₂)
(e : ∏ (j : J),
CoproductIn _ _ coprod₁ j
=
CoproductIn _ _ coprod₂ j · idtoiso (!q))
: coprod₁ = coprod₂.
Show proof.
use subtypePath.
{
intro.
repeat (use impred ; intro).
use isapropiscontr.
}
use total2_paths_f.
- exact q.
- rewrite transportf_sec_constant.
use funextsec.
intro j.
rewrite <- !idtoiso_postcompose.
pose (p := e j).
rewrite !idtoiso_inv in p.
refine (maponpaths (λ z, z · _) p @ _).
rewrite !assoc'.
refine (_ @ id_right _).
apply maponpaths.
apply z_iso_after_z_iso_inv.
{
intro.
repeat (use impred ; intro).
use isapropiscontr.
}
use total2_paths_f.
- exact q.
- rewrite transportf_sec_constant.
use funextsec.
intro j.
rewrite <- !idtoiso_postcompose.
pose (p := e j).
rewrite !idtoiso_inv in p.
refine (maponpaths (λ z, z · _) p @ _).
rewrite !assoc'.
refine (_ @ id_right _).
apply maponpaths.
apply z_iso_after_z_iso_inv.
Definition z_iso_between_Coproduct
{C : category}
{J : UU}
{D : J → C}
(coprod₁ coprod₂ : Coproduct J C D)
: z_iso coprod₁ coprod₂.
Show proof.
use make_z_iso.
- exact (CoproductArrow _ _ coprod₁ (CoproductIn _ _ coprod₂)).
- exact (CoproductArrow _ _ coprod₂ (CoproductIn _ _ coprod₁)).
- split.
+ abstract
(use CoproductArrow_eq ;
intro j ;
rewrite !assoc ;
rewrite !CoproductInCommutes ;
rewrite id_right ;
apply idpath).
+ abstract
(use CoproductArrow_eq ;
intro j ;
rewrite !assoc ;
rewrite !CoproductInCommutes ;
rewrite id_right ;
apply idpath).
- exact (CoproductArrow _ _ coprod₁ (CoproductIn _ _ coprod₂)).
- exact (CoproductArrow _ _ coprod₂ (CoproductIn _ _ coprod₁)).
- split.
+ abstract
(use CoproductArrow_eq ;
intro j ;
rewrite !assoc ;
rewrite !CoproductInCommutes ;
rewrite id_right ;
apply idpath).
+ abstract
(use CoproductArrow_eq ;
intro j ;
rewrite !assoc ;
rewrite !CoproductInCommutes ;
rewrite id_right ;
apply idpath).
Definition isaprop_Coproduct
{C : category}
(HC : is_univalent C)
(J : UU)
(D : J → C)
: isaprop (Coproduct J C D).
Show proof.
use invproofirrelevance.
intros p₁ p₂.
use eq_Coproduct.
- refine (isotoid _ HC _).
apply z_iso_between_Coproduct.
- intro j.
rewrite idtoiso_inv.
rewrite idtoiso_isotoid ; cbn.
rewrite CoproductInCommutes.
apply idpath.
intros p₁ p₂.
use eq_Coproduct.
- refine (isotoid _ HC _).
apply z_iso_between_Coproduct.
- intro j.
rewrite idtoiso_inv.
rewrite idtoiso_isotoid ; cbn.
rewrite CoproductInCommutes.
apply idpath.
Section Coproduct_different_indexers.
Definition CoproductOfArrowsInclusion {I J : UU} {C : category}
(incl : I -> J) {a : I -> C} (CCab : Coproduct _ _ a) {c : J -> C}
(CCcd : Coproduct _ _ c) (f : ∏ i, a i --> c (incl i)) :
CoproductObject _ _ CCab --> CoproductObject _ _ CCcd :=
CoproductArrow _ _ CCab (λ i, f i · CoproductIn _ _ CCcd (incl i)).
Definition CoproductOfArrows' (I : UU) (C : category)
{a : I -> C} (CCab : Coproduct _ _ a) {c : I -> C}
(CCcd : Coproduct _ _ c) (f : ∏ i, a i --> c i) :
CoproductObject _ _ CCab --> CoproductObject _ _ CCcd :=
CoproductOfArrowsInclusion (idfun I) CCab CCcd f.
Lemma CoproductOfArrowsInclusionIn {I J : UU} {C : category}
(incl : I -> J) {a : I -> C} (CCab : Coproduct _ _ a) {c : J -> C}
(CCcd : Coproduct _ _ c) (f : ∏ i, a i --> c (incl i)) :
∏ i, CoproductIn _ _ CCab i · CoproductOfArrowsInclusion incl CCab CCcd f = f i · CoproductIn _ _ CCcd (incl i).
Show proof.
Lemma CoproductOfArrows'In (I : UU) (C : category)
{a : I -> C} (CCab : Coproduct _ _ a) {c : I -> C}
(CCcd : Coproduct _ _ c) (f : ∏ i, a i --> c i) :
∏ i, CoproductIn _ _ CCab i · CoproductOfArrows' _ _ CCab CCcd f = f i · CoproductIn _ _ CCcd i.
Show proof.
Lemma precompWithCoproductArrowInclusion {I J : UU} {C : category}
(incl : I -> J) {a : I -> C} (CCab : Coproduct _ _ a) {c : J -> C}
(CCcd : Coproduct _ _ c) (f : ∏ i, a i --> c (incl i))
{x : C} (k : ∏ i, c i --> x) :
CoproductOfArrowsInclusion incl CCab CCcd f · CoproductArrow _ _ CCcd k =
CoproductArrow _ _ CCab (λ i, f i · k (incl i)).
Show proof.
apply CoproductArrowUnique; intro i.
now rewrite assoc, CoproductOfArrowsInclusionIn, <- assoc, CoproductInCommutes.
now rewrite assoc, CoproductOfArrowsInclusionIn, <- assoc, CoproductInCommutes.
Lemma precompWithCoproductArrow' (I : UU) (C : category)
{a : I -> C} (CCab : Coproduct _ _ a) {c : I -> C}
(CCcd : Coproduct _ _ c) (f : ∏ i, a i --> c i)
{x : C} (k : ∏ i, c i --> x) :
CoproductOfArrows' _ _ CCab CCcd f · CoproductArrow _ _ CCcd k =
CoproductArrow _ _ CCab (λ i, f i · k i).
Show proof.
Definition CoproductOfArrowsInclusion_comp {I J K: UU} {C : category}
{a : I -> C} {b : J -> C} {c : K -> C}
(CCI : Coproducts I C) (CCJ : Coproducts J C) (CCK : Coproducts K C)
{inclI : I -> J} {inclJ : J -> K}
(f : ∏ i, a i --> b (inclI i)) (g : ∏ j, b j --> c (inclJ j)) :
CoproductOfArrowsInclusion inclI (CCI _) (CCJ _) f ·
CoproductOfArrowsInclusion inclJ (CCJ _) (CCK _) g
= CoproductOfArrowsInclusion (λ i, inclJ (inclI i)) (CCI _) (CCK _) (λ i, f i · g (inclI i)).
Show proof.
apply CoproductArrowUnique; intro i.
rewrite assoc, CoproductOfArrowsInclusionIn.
now rewrite <- assoc, CoproductOfArrowsInclusionIn, assoc.
rewrite assoc, CoproductOfArrowsInclusionIn.
now rewrite <- assoc, CoproductOfArrowsInclusionIn, assoc.
Definition CoproductOfArrows'_comp (I : UU) (C : category) (CC : Coproducts I C)
(a b c : I -> C) (f : ∏ i, a i --> b i) (g : ∏ i, b i --> c i) :
CoproductOfArrows' _ _ _ _ f · CoproductOfArrows' _ _ (CC _) (CC _) g
= CoproductOfArrows' _ _ (CC _) (CC _)(λ i, f i · g i).
Show proof.
End Coproduct_different_indexers.