Library UniMath.CategoryTheory.Limits.Products

Direct implementation of indexed products together with:
Written by: Anders Mörtberg 2016

Definition of indexed products of objects in a precategory

Section product_def.

Context (I : UU) (C : category).

Definition isProduct (c : (i : I), C) (p : C)
  (pi : i, p --> c i) :=
   (a : C) (f : i, a --> c i),
    ∃! (fap : a --> p), i, fap · pi i = f i.

Definition Product (ci : i, C) :=
   pp1p2 : ( p : C, i, p --> ci i),
    isProduct ci (pr1 pp1p2) (pr2 pp1p2).

Definition Products := (ci : i, C), Product ci.
Definition hasProducts := (ci : i, C), Product ci .

Definition ProductObject {c : i, C} (P : Product c) : C := pr1 (pr1 P).

Coercion ProductObject : Product >-> ob.

Definition ProductPr {c : i, C} (P : Product c) : i, P --> c i :=
  pr2 (pr1 P).

Definition isProduct_Product {c : i, C} (P : Product c) :
   isProduct c P (ProductPr P).
 Show proof.
  exact (pr2 P).

Definition ProductArrow {c : i, C} (P : Product c) {a : C} (f : i, a --> c i)
  : a --> P.
Show proof.
  apply (pr1 (pr1 (isProduct_Product P _ f))).

Lemma ProductPrCommutes (c : i, C) (P : Product c) :
      (a : C) (f : i, a --> c i) i, ProductArrow P f · ProductPr P i = f i.
Show proof.
  intros a f i.
  apply (pr2 (pr1 (isProduct_Product P _ f)) i).

Lemma ProductPr_idtoiso {i1 i2 : I} (a : I -> C) (P : Product a)
      (e : i1 = i2) :
  ProductPr P i1 · idtoiso (maponpaths a e) = ProductPr P i2.
Show proof.
  induction e.
  apply id_right.

Lemma ProductArrowUnique (c : i, C) (P : Product c) (x : C)
    (f : i, x --> c i) (k : x --> P)
    (Hk : i, k · ProductPr P i = f i) : k = ProductArrow P f.
Show proof.
  set (H' := pr2 (isProduct_Product P _ f) (k,,Hk)).
  apply (base_paths _ _ H').

Definition make_Product (a : i, C) :
   (c : C) (f : i, Cc,a i), isProduct _ _ f -> Product a.
Show proof.
  intros c f X.
  exact (tpair _ (c,,f) X).

Definition make_isProduct (hsC : has_homsets C) (a : I -> C) (p : C)
  (pa : i, Cp,a i) : ( (c : C) (f : i, Cc,a i),
                                  ∃! k : Cc,p, i, k · pa i = f i) ->
                              isProduct a p pa.
Show proof.
intros H c cc; apply H.

Lemma ProductArrowEta (c : i, C) (P : Product c) (x : C)
    (f : x --> P) :
    f = ProductArrow P (λ i, f · ProductPr P i).
Show proof.
  now apply ProductArrowUnique.

Proposition ProductArrow_eq
            {d : I C}
            (w : C)
            (x : Product d)
            (f g : w --> x)
            (p : (i : I), f · ProductPr x i = g · ProductPr x i)
  : f = g.
Show proof.
  refine (ProductArrowEta _ _ _ _ @ _ @ !(ProductArrowEta _ _ _ _)).
  apply maponpaths.
  use funextsec.
  exact p.

Definition ProductOfArrows {c : i, C} (Pc : Product c) {a : i, C}
    (Pa : Product a) (f : i, a i --> c i) :
      Pa --> Pc :=
    ProductArrow Pc (λ i, ProductPr Pa i · f i).

Lemma ProductOfArrowsPr {c : i, C} (Pc : Product c) {a : i, C}
    (Pa : Product a) (f : i, a i --> c i) :
     i, ProductOfArrows Pc Pa f · ProductPr Pc i = ProductPr Pa i · f i.
Show proof.
  unfold ProductOfArrows; intro i.
  now rewrite (ProductPrCommutes _ _ _ _ i).

Lemma postcompWithProductArrow {c : i, C} (Pc : Product c) {a : i, C}
    (Pa : Product a) (f : i, a i --> c i)
    {x : C} (k : i, x --> a i) :
        ProductArrow Pa k · ProductOfArrows Pc Pa f =
        ProductArrow Pc (λ i, k i · f i).
Show proof.

Lemma precompWithProductArrow {c : i, C} (Pc : Product c)
  {a : C} (f : i, a --> c i) {x : C} (k : x --> a) :
       k · ProductArrow Pc f = ProductArrow Pc (λ i, k · f i).
Show proof.
apply ProductArrowUnique; intro i.
now rewrite <- assoc, ProductPrCommutes.

End product_def.

Section Products.

Context (I : UU) (C : category) (CC : Products I C).

Definition ProductOfArrows_comp (a b c : (i : I), C)
  (f : i, a i --> b i) (g : i, b i --> c i)
  : ProductOfArrows _ _ _ _ f · ProductOfArrows _ _ _ (CC _) g
    = ProductOfArrows _ _ (CC _) (CC _) (λ i, f i · g i).
Show proof.
apply ProductArrowUnique; intro i.
rewrite <- assoc, ProductOfArrowsPr.
now rewrite assoc, ProductOfArrowsPr, assoc.

End Products.

Section finite_products.

  Definition finite_products (C : category) := (n : nat), Products (stn n) C.

End finite_products.

Section Product_unique.

Context (I : UU) (C : category) (CC : Products I C) (a : (i : I), C).

Lemma Product_endo_is_identity (P : Product _ _ a)
  (k : P --> P)
  (H1 : i, k · ProductPr _ _ P i = ProductPr _ _ P i)
  : identity _ = k.
Show proof.
  apply pathsinv0.
  eapply pathscomp0.
  apply ProductArrowEta.
  apply pathsinv0.
  apply ProductArrowUnique; intro i; apply pathsinv0.
  now rewrite id_left, H1.

End Product_unique.

The product functor: C^I -> C

Section product_functor.

Context (I : UU) {C : category} (PC : Products I C).

Definition product_functor_data :
  functor_data (power_category I C) C.
Show proof.
use tpair.
- intros p.
  apply (ProductObject _ _ (PC p)).
- intros p q f.
  exact (ProductOfArrows _ _ _ _ f).

Definition product_functor : functor (power_category I C) C.
Show proof.
apply (tpair _ product_functor_data).
abstract (split;
  [ now intro x; simpl; apply pathsinv0, Product_endo_is_identity;
        intro i; rewrite ProductOfArrowsPr, id_right
  | now intros x y z f g; simpl; rewrite ProductOfArrows_comp]).

End product_functor.

Definition product_of_functors_alt
  (I : UU) {C D : category} (HD : Products I D)
  (F : (i : I), functor C D) : functor C D :=
   functor_composite (delta_functor I C)
     (functor_composite (family_functor _ F) (product_functor _ HD)).

Products lift to functor categories

Section def_functor_pointwise_prod.

Context(I : UU) (C D : category) (HD : Products I D).

Section product_of_functors.

Context (F : I -> functor C D).

Definition product_of_functors_ob (c : C) : D :=
  HD (λ i, F i c).

Definition product_of_functors_mor (c c' : C) (f : c --> c') :
  product_of_functors_ob c --> product_of_functors_ob c' :=
    ProductOfArrows _ _ _ _ (λ i, # (F i) f).

Definition product_of_functors_data : functor_data C D.
Show proof.

Lemma is_functor_product_of_functors_data : is_functor product_of_functors_data.
Show proof.
split; simpl; intros.
- unfold functor_idax; intros; simpl in *.
    apply pathsinv0.
    apply Product_endo_is_identity; intro i.
    unfold product_of_functors_mor.
    eapply pathscomp0; [apply (ProductOfArrowsPr _ _ (HD (λ i, (F i) a)))|].
    now simpl; rewrite functor_id, id_right.
- unfold functor_compax; simpl; unfold product_of_functors_mor.
  intros; simpl in *.
  apply pathsinv0.
  eapply pathscomp0.
  apply ProductOfArrows_comp.
  apply maponpaths, funextsec; intro i.
  now rewrite functor_comp.

Definition product_of_functors : functor C D :=
  tpair _ _ is_functor_product_of_functors_data.

Lemma product_of_functors_alt_eq_product_of_functors :
  product_of_functors_alt _ HD F = product_of_functors.
Show proof.
now apply (functor_eq _ _ D).

Definition product_nat_trans_pr_data i (c : C) :
  D product_of_functors c, (F i) c :=
  ProductPr _ _ (HD (λ j, (F j) c)) i.

Lemma is_nat_trans_product_nat_trans_pr_data i :
  is_nat_trans _ _ (product_nat_trans_pr_data i).
Show proof.
intros c c' f.
apply (ProductOfArrowsPr I _ (HD (λ i, F i c')) (HD (λ i, F i c))).

Definition product_nat_trans_pr i : nat_trans product_of_functors (F i) :=
  tpair _ _ (is_nat_trans_product_nat_trans_pr_data i).

Section vertex.

The product morphism of a diagram with vertex A

Context (A : functor C D) (f : i, nat_trans A (F i)).

Definition product_nat_trans_data c :
  A c --> product_of_functors c:=
    ProductArrow _ _ _ (λ i, f i c).

Lemma is_nat_trans_product_nat_trans_data :
  is_nat_trans _ _ product_nat_trans_data.
Show proof.
intros a b k; simpl.
eapply pathscomp0; [apply precompWithProductArrow|].
apply pathsinv0.
eapply pathscomp0; [apply postcompWithProductArrow|].
apply maponpaths, funextsec; intro i.
now rewrite (nat_trans_ax (f i)).

Definition product_nat_trans : nat_trans A product_of_functors
  := tpair _ _ is_nat_trans_product_nat_trans_data.

End vertex.

Definition functor_precat_product_cone
  : Product I [C, D] F.
Show proof.
use make_Product.
- apply product_of_functors.
- apply product_nat_trans_pr.
- use make_isProduct.
  + apply functor_category_has_homsets.
  + intros A f.
    use tpair.
    * apply (tpair _ (product_nat_trans A f)).
      abstract (intro i; apply (nat_trans_eq D); intro c;
                apply (ProductPrCommutes I D _ (HD (λ j, (F j) c)))).
    * abstract (
        intro t; apply subtypePath; simpl;
          [intro; apply impred; intro; apply (isaset_nat_trans D)|];
        apply (nat_trans_eq D); intro c;
        apply ProductArrowUnique; intro i;
        apply (nat_trans_eq_pointwise (pr2 t i))).

End product_of_functors.

Definition Products_functor_precat : Products I [C, D].
Show proof.
intros F; apply functor_precat_product_cone.

End def_functor_pointwise_prod.

Products from limits

Section products_from_limits.

Context (I : UU) (C : category).

Definition I_graph : graph := (I,,λ _ _,empty).

Definition products_diagram (F : I C) : diagram I_graph C.
Show proof.
exists F.
abstract (intros u v e; induction e).

Definition productscone c (F : I C) (H : i, c --> F i) :
  cone (products_diagram F) c.
Show proof.
use tpair.
+ intro v; apply H.
+ abstract (intros u v e; induction e).

Lemma Products_from_Lims : Lims_of_shape I_graph C -> Products I C.
Show proof.
intros H F.
set (HF := H (products_diagram F)).
use make_Product.
+ apply (lim HF).
+ intros i; apply (limOut HF).
+ apply (make_isProduct _ _ C); intros c Fic.
  use unique_exists.
  - apply limArrow.
    use make_cone.
    * simpl; intro i; apply Fic.
    * abstract (simpl; intros u v e; induction e).
  - abstract (simpl; intro i; apply (limArrowCommutes HF)).
  - abstract (intros y; apply impred; intro i; apply C).
  - abstract (intros f Hf; apply limArrowUnique; simpl in *; intros i; apply Hf).

End products_from_limits.

Products are closed under iso
Definition isProduct_z_iso
           {C : category}
           {J : UU}
           (D : J C)
           {x y : C}
           (h : z_iso x y)
           (px : (j : J), x --> D j)
           (py : (j : J), y --> D j)
           (Hx : isProduct J _ D x px)
           (q : (j : J), py j = inv_from_z_iso h · px j)
  : isProduct J _ D y py.
Show proof.
  use make_isProduct.
  {
    apply homset_property.
  }
  intros z f.
  use iscontraprop1.
  - abstract
      (use invproofirrelevance ;
       intros φ φ ;
       use subtypePath ; [ intro ; use impred ; intro ; apply homset_property | ] ;
       use (cancel_z_iso _ _ (z_iso_inv h)) ;
       use (ProductArrow_eq _ _ _ (make_Product _ _ _ _ _ Hx)) ; cbn ;
       intro j ;
       rewrite !assoc' ;
       rewrite <- q ;
       exact (pr2 φ j @ !(pr2 φ j))).
  - refine (ProductArrow _ _ (make_Product _ _ _ _ _ Hx) f · h ,, _).
    abstract
      (intro j ;
       rewrite !assoc' ;
       rewrite q ;
       rewrite (maponpaths (λ z, _ · z) (assoc _ _ _)) ;
       rewrite z_iso_inv_after_z_iso ;
       rewrite id_left ;
       apply ProductPrCommutes).

Products are unique
Definition eq_Product
           {C : category}
           {J : UU}
           {D : J C}
           (prod₁ prod₂ : Product J C D)
           (q : ProductObject _ _ prod₁ = ProductObject _ _ prod₂)
           (e : (j : J),
                ProductPr _ _ prod₁ j
                =
                idtoiso q · ProductPr _ _ prod₂ j)
  : prod₁ = prod₂.
Show proof.
  use subtypePath.
  {
    intro.
    repeat (use impred ; intro).
    use isapropiscontr.
  }
  use total2_paths_f.
  - exact q.
  - rewrite transportf_sec_constant.
    use funextsec.
    intro j.
    rewrite <- !idtoiso_precompose.
    rewrite !idtoiso_inv.
    use z_iso_inv_on_right.
    exact (e j).

Definition z_iso_between_Product
           {C : category}
           {J : UU}
           {D : J C}
           (prod₁ prod₂ : Product J C D)
  : z_iso prod₁ prod₂.
Show proof.
  use make_z_iso.
  - exact (ProductArrow _ _ prod₂ (ProductPr _ _ prod₁)).
  - exact (ProductArrow _ _ prod₁ (ProductPr _ _ prod₂)).
  - split.
    + abstract
        (use ProductArrow_eq ;
         intro j ;
         rewrite !assoc' ;
         rewrite !ProductPrCommutes ;
         rewrite id_left ;
         apply idpath).
    + abstract
        (use ProductArrow_eq ;
         intro j ;
         rewrite !assoc' ;
         rewrite !ProductPrCommutes ;
         rewrite id_left ;
         apply idpath).

Definition isaprop_Product
           {C : category}
           (HC : is_univalent C)
           (J : UU)
           (D : J C)
  : isaprop (Product J C D).
Show proof.
  use invproofirrelevance.
  intros p₁ p₂.
  use eq_Product.
  - refine (isotoid _ HC _).
    apply z_iso_between_Product.
  - rewrite idtoiso_isotoid ; cbn.
    intro j.
    rewrite ProductPrCommutes.
    apply idpath.

Definition isProduct_eq_arrow
           {C : category}
           {J : UU}
           {D : J C}
           {ys : C}
           {π π' : (j : J), ys --> D j}
           (q : (j : J), π j = π' j)
           (H : isProduct J C D ys π)
  : isProduct J C D ys π'.
Show proof.
  intros w f.
  use iscontraprop1.
  - abstract
      (use invproofirrelevance ;
       intros φ φ ;
       use subtypePath ; [ intro ; use impred ; intro ; apply homset_property | ] ;
       use (ProductArrow_eq _ _ _ (make_Product _ _ _ _ _ H)) ;
       intro j ; cbn ;
       rewrite !q ;
       exact (pr2 φ j @ !(pr2 φ j))).
  - simple refine (_ ,, _).
    + exact (ProductArrow _ _ (make_Product _ _ _ _ _ H) f).
    + abstract
        (cbn ;
         intro j ;
         rewrite <- q ;
         apply (ProductPrCommutes _ _ _ (make_Product _ _ _ _ _ H))).

Construction of Product from an isomorphism to Product.

Section ProductFromIso.

  Context {C : category}.
  Context {J : UU}.
  Context {X : J C}.
  Context (P : Product J C X).
  Context (Y : C).
  Context (i : z_iso Y (ProductObject _ _ P)).

  Local Lemma iso_to_isProduct_comm
    (W : C)
    (f : j, W --> X j)
    : ( j, ProductArrow _ _ P f · inv_from_z_iso i · (i · ProductPr _ _ P j) = f j).
  Show proof.
    intro j.
    rewrite <- assoc.
    rewrite (assoc _ i).
    rewrite (z_iso_after_z_iso_inv i).
    rewrite id_left.
    apply ProductPrCommutes.

  Local Lemma iso_to_isProduct_unique
    (W : C)
    (f : j, C W, X j)
    (y0 : C W, Y)
    (T : j, y0 · (i · ProductPr _ _ P j) = f j)
    : y0 = ProductArrow _ _ P f · z_iso_inv_from_z_iso i.
  Show proof.
    apply (post_comp_with_z_iso_is_inj (pr2 i) _ _).
    rewrite <- assoc.
    refine (_ @ !maponpaths _ (z_iso_after_z_iso_inv i)).
    rewrite id_right.
    apply ProductArrowUnique.
    intro j.
    rewrite <- assoc.
    apply T.

  Lemma iso_to_isProduct
    : isProduct _ _ _ Y (λ j, i · ProductPr _ _ P j).
  Show proof.
    intros W f.
    use unique_exists.
    - exact ((ProductArrow _ _ P f) · (z_iso_inv_from_z_iso i)).
    - abstract exact (iso_to_isProduct_comm W f).
    - abstract (intro; apply impred_isaprop; intro; apply C).
    - abstract (intros y0 T; exact (iso_to_isProduct_unique W f y0 T)).

  Definition iso_to_Product
    : Product J C X
    := make_Product _ _ _ _ _ iso_to_isProduct.

End ProductFromIso.