Library UniMath.CategoryTheory.Monoidal.Functors
Require Import UniMath.Foundations.All.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.Monoidal.WhiskeredBifunctors.
Require Import UniMath.CategoryTheory.Monoidal.Categories.
Require Import UniMath.CategoryTheory.Monoidal.Structure.Symmetric.
Local Open Scope cat.
Import BifunctorNotations.
Import MonoidalNotations.
Section local_helper_lemmas.
Lemma iso_stable_under_equality
{C : category}
{x y : C}
{f g : C⟦x,y⟧}
(p : g = f)
(Hf : is_z_isomorphism f)
: is_z_isomorphism g.
Show proof.
Lemma iso_stable_under_transportf
{C : category}
{x y z : C}
{f : C⟦x,y⟧}
(pf : y=z)
(Hf : is_z_isomorphism f)
: is_z_isomorphism (transportf _ pf f).
Show proof.
Lemma iso_stable_under_equalitytransportf
{C : category}
{x y z : C}
{f : C⟦x,y⟧} {g : C⟦x,z⟧}
{pf : y = z}
(qg : g = transportf _ pf f)
(Hf : is_z_isomorphism f)
: is_z_isomorphism g.
Show proof.
End local_helper_lemmas.
Section MonoidalFunctors.
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Core.Isos.
Require Import UniMath.CategoryTheory.whiskering.
Require Import UniMath.CategoryTheory.Monoidal.WhiskeredBifunctors.
Require Import UniMath.CategoryTheory.Monoidal.Categories.
Require Import UniMath.CategoryTheory.Monoidal.Structure.Symmetric.
Local Open Scope cat.
Import BifunctorNotations.
Import MonoidalNotations.
Section local_helper_lemmas.
Lemma iso_stable_under_equality
{C : category}
{x y : C}
{f g : C⟦x,y⟧}
(p : g = f)
(Hf : is_z_isomorphism f)
: is_z_isomorphism g.
Show proof.
induction p.
exact Hf.
exact Hf.
Lemma iso_stable_under_transportf
{C : category}
{x y z : C}
{f : C⟦x,y⟧}
(pf : y=z)
(Hf : is_z_isomorphism f)
: is_z_isomorphism (transportf _ pf f).
Show proof.
induction pf.
use Hf.
use Hf.
Lemma iso_stable_under_equalitytransportf
{C : category}
{x y z : C}
{f : C⟦x,y⟧} {g : C⟦x,z⟧}
{pf : y = z}
(qg : g = transportf _ pf f)
(Hf : is_z_isomorphism f)
: is_z_isomorphism g.
Show proof.
End local_helper_lemmas.
Section MonoidalFunctors.
1. Lax monoidal functors
(Weak) Monoidal functors
Definition preserves_tensordata
{C D : category}
(M : monoidal C)
(N : monoidal D)
(F : functor C D)
: UU
:= ∏ (x y : C), D ⟦ F x ⊗_{ N} F y, F (x ⊗_{ M} y) ⟧.
Definition preserves_unit
{C D : category}
(M : monoidal C)
(N : monoidal D)
(F : functor C D)
: UU
:= D ⟦ I_{N} , F I_{M} ⟧.
Definition fmonoidal_data
{C D : category}
(M : monoidal C)
(N : monoidal D)
(F : functor C D)
: UU
:= preserves_tensordata M N F × preserves_unit M N F.
Definition fmonoidal_preservestensordata
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fmd : fmonoidal_data M N F)
: preserves_tensordata M N F
:= pr1 fmd.
Definition fmonoidal_preservesunit
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fmd : fmonoidal_data M N F)
: preserves_unit M N F
:= pr2 fmd.
Lemma fmonoidal_data_eq
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fmd1 fmd2 : fmonoidal_data M N F)
: (∏ x y : C, fmonoidal_preservestensordata fmd1 x y = fmonoidal_preservestensordata fmd2 x y) ->
fmonoidal_preservesunit fmd1 = fmonoidal_preservesunit fmd2 -> fmd1 = fmd2.
Show proof.
intros pT pU.
use total2_paths_f.
- do 2 (apply funextsec ; intro) ; apply pT.
- rewrite transportf_const.
apply pU.
use total2_paths_f.
- do 2 (apply funextsec ; intro) ; apply pT.
- rewrite transportf_const.
apply pU.
Properties
Definition preserves_tensor_nat_left
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(pt : preserves_tensordata M N F)
: UU
:= ∏ (x y1 y2 : C) (g : C⟦y1,y2⟧),
F x ⊗^{ N}_{l} # F g · pt x y2
=
pt x y1 · # F (x ⊗^{ M}_{l} g).
Definition preserves_tensor_nat_right
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(pt : preserves_tensordata M N F)
: UU
:= ∏ (x1 x2 y : C) (f : C⟦x1,x2⟧),
# F f ⊗^{ N}_{r} F y · pt x2 y
=
pt x1 y · # F (f ⊗^{ M}_{r} y).
Definition preserves_leftunitality
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(pt : preserves_tensordata M N F)
(pu : preserves_unit M N F)
: UU
:= ∏ (x : C),
(pu ⊗^{ N}_{r} F x) · (pt I_{M} x) · (# F lu^{ M }_{ x})
=
lu^{ N }_{ F x}.
Definition preserves_leftunitalityinv
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(pt : preserves_tensordata M N F)
(pu : preserves_unit M N F)
: UU
:= ∏ (x : C),
luinv^{ N }_{ F x} · (pu ⊗^{ N}_{r} F x) · (pt I_{M} x)
=
# F luinv^{ M }_{ x}.
Definition preserves_rightunitality
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(pt : preserves_tensordata M N F)
(pu : preserves_unit M N F)
: UU
:= ∏ (x : C),
((F x ⊗^{ N}_{l} pu) · (pt x I_{M}) · (# F ru^{ M }_{ x})
=
ru^{ N }_{ F x}).
Definition preserves_rightunitalityinv
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(pt : preserves_tensordata M N F)
(pu : preserves_unit M N F)
: UU
:= ∏ (x : C),
ruinv^{ N }_{ F x} · F x ⊗^{ N}_{l} pu · pt x I_{M}
=
# F ruinv^{ M }_{ x}.
Definition preserves_associativity
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(pt : preserves_tensordata M N F)
: UU
:= ∏ (x y z : C),
((pt x y) ⊗^{N}_{r} (F z)) · (pt (x ⊗_{M} y) z) · (#F (α^{M}_{x,y,z}))
=
α^{N}_{F x, F y, F z} · ((F x) ⊗^{N}_{l} (pt y z)) · (pt x (y ⊗_{M} z)).
Definition preserves_associativityinv
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(pt : preserves_tensordata M N F)
: UU
:= ∏ (x y z : C),
αinv^{N}_{F x, F y, F z} · ((pt x y) ⊗^{N}_{r} (F z)) · (pt (x ⊗_{M} y) z)
=
((F x) ⊗^{N}_{l} (pt y z)) · (pt x (y ⊗_{M} z)) · (#F (αinv^{M}_{x,y,z})).
Definition fmonoidal_laxlaws
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fmd : fmonoidal_data M N F)
: UU
:= (preserves_tensor_nat_left (fmonoidal_preservestensordata fmd)) ×
(preserves_tensor_nat_right (fmonoidal_preservestensordata fmd)) ×
(preserves_associativity (fmonoidal_preservestensordata fmd)) ×
(preserves_leftunitality
(fmonoidal_preservestensordata fmd)
(fmonoidal_preservesunit fmd)) ×
(preserves_rightunitality
(fmonoidal_preservestensordata fmd)
(fmonoidal_preservesunit fmd)).
Lemma isaprop_fmonoidal_laxlaws
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fmd : fmonoidal_data M N F) : isaprop (fmonoidal_laxlaws fmd).
Show proof.
Definition fmonoidal_lax
{C D : category}
(M : monoidal C)
(N : monoidal D)
(F : functor C D)
: UU
:= ∑ (fmd : fmonoidal_data M N F), fmonoidal_laxlaws fmd.
Definition fmonoidal_fdata
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fm : fmonoidal_lax M N F)
: fmonoidal_data M N F
:= pr1 fm.
Coercion fmonoidal_fdata : fmonoidal_lax >-> fmonoidal_data.
Lemma fmonoidal_lax_eq
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fmd fmd' : fmonoidal_lax M N F) :
pr1 fmd = pr1 fmd' -> fmd = fmd'.
Show proof.
Definition fmonoidal_flaws
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fm : fmonoidal_lax M N F)
: fmonoidal_laxlaws fm
:= pr2 fm.
Definition fmonoidal_preservestensornatleft
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fm : fmonoidal_lax M N F)
: preserves_tensor_nat_left (fmonoidal_preservestensordata fm)
:= pr12 fm.
Definition fmonoidal_preservestensornatright
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fm : fmonoidal_lax M N F)
: preserves_tensor_nat_right (fmonoidal_preservestensordata fm)
:= pr122 fm.
Definition fmonoidal_preservesassociativity
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fm : fmonoidal_lax M N F)
: preserves_associativity (fmonoidal_preservestensordata fm)
:= pr1 (pr222 fm).
Lemma fmonoidal_preservesassociativityinv
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fm : fmonoidal_lax M N F)
: preserves_associativityinv (fmonoidal_preservestensordata fm).
Show proof.
Definition fmonoidal_preservesleftunitality
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fm : fmonoidal_lax M N F)
: preserves_leftunitality
(fmonoidal_preservestensordata fm)
(fmonoidal_preservesunit fm)
:= pr12 (pr222 fm).
Lemma fmonoidal_preservesleftunitalityinv
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fm : fmonoidal_lax M N F)
: preserves_leftunitalityinv
(fmonoidal_preservestensordata fm)
(fmonoidal_preservesunit fm).
Show proof.
Definition fmonoidal_preservesrightunitality
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fm : fmonoidal_lax M N F)
: preserves_rightunitality
(fmonoidal_preservestensordata fm)
(fmonoidal_preservesunit fm)
:= pr22 (pr222 fm).
Lemma fmonoidal_preservesrightunitalityinv
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fm : fmonoidal_lax M N F)
: preserves_rightunitalityinv
(fmonoidal_preservestensordata fm)
(fmonoidal_preservesunit fm).
Show proof.
Definition preserves_tensor_strongly
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
(pt : preserves_tensordata M N F)
: UU
:= ∏ (x y : C), is_z_isomorphism (pt x y).
Definition pointwise_z_iso_from_preserves_tensor_strongly
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
{pt : preserves_tensordata M N F}
(pts : preserves_tensor_strongly pt) (x y : C)
: z_iso (F x ⊗_{ N} F y) (F (x ⊗_{ M} y))
:= pt x y ,, pts x y.
Lemma preserves_associativity_of_inverse_preserves_tensor
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
{pt : preserves_tensordata M N F}
(ptα : preserves_associativity pt)
(pts : preserves_tensor_strongly pt) (x y z : C)
: (is_z_isomorphism_mor (pts (x ⊗_{M} y) z))
· ((is_z_isomorphism_mor (pts x y)) ⊗^{N}_{r} (F z))
· α^{N}_{F x, F y, F z}
=
(#F (α^{M}_{x,y,z}))
· (is_z_isomorphism_mor (pts x (y ⊗_{M} z)))
· ((F x) ⊗^{N}_{l} (is_z_isomorphism_mor (pts y z))).
Show proof.
Lemma preserves_tensorinv_nat_right
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
{pt : preserves_tensordata M N F}
(pts : preserves_tensor_strongly pt)
(ptrn : preserves_tensor_nat_right pt)
(x1 x2 y : C)
(f : C⟦x1,x2⟧)
: (is_z_isomorphism_mor (pts x1 y)) · # F f ⊗^{ N}_{r} F y
=
# F (f ⊗^{ M}_{r} y) · (is_z_isomorphism_mor (pts x2 y)).
Show proof.
Lemma preserves_tensorinv_nat_left
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
{pt : preserves_tensordata M N F}
(pts : preserves_tensor_strongly pt)
(ptrn : preserves_tensor_nat_left pt)
(x1 x2 y : C)
(f : C⟦x1,x2⟧)
: (is_z_isomorphism_mor (pts y x1)) · F y ⊗^{ N}_{l} # F f
=
# F (y ⊗^{ M}_{l} f) · (is_z_isomorphism_mor (pts y x2)).
Show proof.
Definition preserves_unit_strongly
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
(pu : preserves_unit M N F)
: UU
:= is_z_isomorphism pu.
Definition fmonoidal_stronglaws
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
(pt : preserves_tensordata M N F)
(pu : preserves_unit M N F)
: UU
:= preserves_tensor_strongly pt × preserves_unit_strongly pu.
Lemma isaprop_fmonoidal_stronglaws
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
(Fm : fmonoidal_data M N F)
: isaprop (fmonoidal_stronglaws (pr1 Fm) (pr2 Fm)).
Show proof.
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(pt : preserves_tensordata M N F)
: UU
:= ∏ (x y1 y2 : C) (g : C⟦y1,y2⟧),
F x ⊗^{ N}_{l} # F g · pt x y2
=
pt x y1 · # F (x ⊗^{ M}_{l} g).
Definition preserves_tensor_nat_right
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(pt : preserves_tensordata M N F)
: UU
:= ∏ (x1 x2 y : C) (f : C⟦x1,x2⟧),
# F f ⊗^{ N}_{r} F y · pt x2 y
=
pt x1 y · # F (f ⊗^{ M}_{r} y).
Definition preserves_leftunitality
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(pt : preserves_tensordata M N F)
(pu : preserves_unit M N F)
: UU
:= ∏ (x : C),
(pu ⊗^{ N}_{r} F x) · (pt I_{M} x) · (# F lu^{ M }_{ x})
=
lu^{ N }_{ F x}.
Definition preserves_leftunitalityinv
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(pt : preserves_tensordata M N F)
(pu : preserves_unit M N F)
: UU
:= ∏ (x : C),
luinv^{ N }_{ F x} · (pu ⊗^{ N}_{r} F x) · (pt I_{M} x)
=
# F luinv^{ M }_{ x}.
Definition preserves_rightunitality
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(pt : preserves_tensordata M N F)
(pu : preserves_unit M N F)
: UU
:= ∏ (x : C),
((F x ⊗^{ N}_{l} pu) · (pt x I_{M}) · (# F ru^{ M }_{ x})
=
ru^{ N }_{ F x}).
Definition preserves_rightunitalityinv
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(pt : preserves_tensordata M N F)
(pu : preserves_unit M N F)
: UU
:= ∏ (x : C),
ruinv^{ N }_{ F x} · F x ⊗^{ N}_{l} pu · pt x I_{M}
=
# F ruinv^{ M }_{ x}.
Definition preserves_associativity
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(pt : preserves_tensordata M N F)
: UU
:= ∏ (x y z : C),
((pt x y) ⊗^{N}_{r} (F z)) · (pt (x ⊗_{M} y) z) · (#F (α^{M}_{x,y,z}))
=
α^{N}_{F x, F y, F z} · ((F x) ⊗^{N}_{l} (pt y z)) · (pt x (y ⊗_{M} z)).
Definition preserves_associativityinv
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(pt : preserves_tensordata M N F)
: UU
:= ∏ (x y z : C),
αinv^{N}_{F x, F y, F z} · ((pt x y) ⊗^{N}_{r} (F z)) · (pt (x ⊗_{M} y) z)
=
((F x) ⊗^{N}_{l} (pt y z)) · (pt x (y ⊗_{M} z)) · (#F (αinv^{M}_{x,y,z})).
Definition fmonoidal_laxlaws
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fmd : fmonoidal_data M N F)
: UU
:= (preserves_tensor_nat_left (fmonoidal_preservestensordata fmd)) ×
(preserves_tensor_nat_right (fmonoidal_preservestensordata fmd)) ×
(preserves_associativity (fmonoidal_preservestensordata fmd)) ×
(preserves_leftunitality
(fmonoidal_preservestensordata fmd)
(fmonoidal_preservesunit fmd)) ×
(preserves_rightunitality
(fmonoidal_preservestensordata fmd)
(fmonoidal_preservesunit fmd)).
Lemma isaprop_fmonoidal_laxlaws
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fmd : fmonoidal_data M N F) : isaprop (fmonoidal_laxlaws fmd).
Show proof.
Definition fmonoidal_lax
{C D : category}
(M : monoidal C)
(N : monoidal D)
(F : functor C D)
: UU
:= ∑ (fmd : fmonoidal_data M N F), fmonoidal_laxlaws fmd.
Definition fmonoidal_fdata
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fm : fmonoidal_lax M N F)
: fmonoidal_data M N F
:= pr1 fm.
Coercion fmonoidal_fdata : fmonoidal_lax >-> fmonoidal_data.
Lemma fmonoidal_lax_eq
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fmd fmd' : fmonoidal_lax M N F) :
pr1 fmd = pr1 fmd' -> fmd = fmd'.
Show proof.
Definition fmonoidal_flaws
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fm : fmonoidal_lax M N F)
: fmonoidal_laxlaws fm
:= pr2 fm.
Definition fmonoidal_preservestensornatleft
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fm : fmonoidal_lax M N F)
: preserves_tensor_nat_left (fmonoidal_preservestensordata fm)
:= pr12 fm.
Definition fmonoidal_preservestensornatright
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fm : fmonoidal_lax M N F)
: preserves_tensor_nat_right (fmonoidal_preservestensordata fm)
:= pr122 fm.
Definition fmonoidal_preservesassociativity
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fm : fmonoidal_lax M N F)
: preserves_associativity (fmonoidal_preservestensordata fm)
:= pr1 (pr222 fm).
Lemma fmonoidal_preservesassociativityinv
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fm : fmonoidal_lax M N F)
: preserves_associativityinv (fmonoidal_preservestensordata fm).
Show proof.
intros x y z.
rewrite assoc'.
apply (z_iso_inv_on_right _ _ _ (_,,_,, monoidal_associatorisolaw N _ _ _)).
cbn.
etrans.
2: { repeat rewrite assoc. apply cancel_postcomposition.
apply fmonoidal_preservesassociativity. }
repeat rewrite assoc'.
apply maponpaths.
etrans.
2: { apply maponpaths.
rewrite <- functor_comp.
apply maponpaths.
apply pathsinv0, (monoidal_associatorisolaw M). }
rewrite functor_id.
apply pathsinv0, id_right.
rewrite assoc'.
apply (z_iso_inv_on_right _ _ _ (_,,_,, monoidal_associatorisolaw N _ _ _)).
cbn.
etrans.
2: { repeat rewrite assoc. apply cancel_postcomposition.
apply fmonoidal_preservesassociativity. }
repeat rewrite assoc'.
apply maponpaths.
etrans.
2: { apply maponpaths.
rewrite <- functor_comp.
apply maponpaths.
apply pathsinv0, (monoidal_associatorisolaw M). }
rewrite functor_id.
apply pathsinv0, id_right.
Definition fmonoidal_preservesleftunitality
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fm : fmonoidal_lax M N F)
: preserves_leftunitality
(fmonoidal_preservestensordata fm)
(fmonoidal_preservesunit fm)
:= pr12 (pr222 fm).
Lemma fmonoidal_preservesleftunitalityinv
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fm : fmonoidal_lax M N F)
: preserves_leftunitalityinv
(fmonoidal_preservestensordata fm)
(fmonoidal_preservesunit fm).
Show proof.
intro x.
rewrite assoc'.
apply (z_iso_inv_on_right _ _ _ (_,,_,, monoidal_leftunitorisolaw N (F x))).
cbn.
rewrite <- (fmonoidal_preservesleftunitality fm).
repeat rewrite assoc'.
apply maponpaths.
etrans.
2: { apply maponpaths.
apply functor_comp. }
etrans.
2: { do 2 apply maponpaths.
apply pathsinv0, (pr1(monoidal_leftunitorisolaw M x)). }
rewrite functor_id.
apply pathsinv0, id_right.
rewrite assoc'.
apply (z_iso_inv_on_right _ _ _ (_,,_,, monoidal_leftunitorisolaw N (F x))).
cbn.
rewrite <- (fmonoidal_preservesleftunitality fm).
repeat rewrite assoc'.
apply maponpaths.
etrans.
2: { apply maponpaths.
apply functor_comp. }
etrans.
2: { do 2 apply maponpaths.
apply pathsinv0, (pr1(monoidal_leftunitorisolaw M x)). }
rewrite functor_id.
apply pathsinv0, id_right.
Definition fmonoidal_preservesrightunitality
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fm : fmonoidal_lax M N F)
: preserves_rightunitality
(fmonoidal_preservestensordata fm)
(fmonoidal_preservesunit fm)
:= pr22 (pr222 fm).
Lemma fmonoidal_preservesrightunitalityinv
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fm : fmonoidal_lax M N F)
: preserves_rightunitalityinv
(fmonoidal_preservestensordata fm)
(fmonoidal_preservesunit fm).
Show proof.
intro x.
rewrite assoc'.
apply (z_iso_inv_on_right _ _ _ (_,,_,, monoidal_rightunitorisolaw N (F x))).
cbn.
rewrite <- (fmonoidal_preservesrightunitality fm).
repeat rewrite assoc'.
apply maponpaths.
etrans.
2: { apply maponpaths.
apply functor_comp. }
etrans.
2: { do 2 apply maponpaths.
apply pathsinv0, (pr1(monoidal_rightunitorisolaw M x)). }
rewrite functor_id.
apply pathsinv0, id_right.
rewrite assoc'.
apply (z_iso_inv_on_right _ _ _ (_,,_,, monoidal_rightunitorisolaw N (F x))).
cbn.
rewrite <- (fmonoidal_preservesrightunitality fm).
repeat rewrite assoc'.
apply maponpaths.
etrans.
2: { apply maponpaths.
apply functor_comp. }
etrans.
2: { do 2 apply maponpaths.
apply pathsinv0, (pr1(monoidal_rightunitorisolaw M x)). }
rewrite functor_id.
apply pathsinv0, id_right.
Definition preserves_tensor_strongly
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
(pt : preserves_tensordata M N F)
: UU
:= ∏ (x y : C), is_z_isomorphism (pt x y).
Definition pointwise_z_iso_from_preserves_tensor_strongly
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
{pt : preserves_tensordata M N F}
(pts : preserves_tensor_strongly pt) (x y : C)
: z_iso (F x ⊗_{ N} F y) (F (x ⊗_{ M} y))
:= pt x y ,, pts x y.
Lemma preserves_associativity_of_inverse_preserves_tensor
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
{pt : preserves_tensordata M N F}
(ptα : preserves_associativity pt)
(pts : preserves_tensor_strongly pt) (x y z : C)
: (is_z_isomorphism_mor (pts (x ⊗_{M} y) z))
· ((is_z_isomorphism_mor (pts x y)) ⊗^{N}_{r} (F z))
· α^{N}_{F x, F y, F z}
=
(#F (α^{M}_{x,y,z}))
· (is_z_isomorphism_mor (pts x (y ⊗_{M} z)))
· ((F x) ⊗^{N}_{l} (is_z_isomorphism_mor (pts y z))).
Show proof.
set (ptsx_yz := pointwise_z_iso_from_preserves_tensor_strongly pts x (y ⊗_{M} z)).
set (ptsxy_z := pointwise_z_iso_from_preserves_tensor_strongly pts (x ⊗_{M} y) z).
set (ptsfx := functor_on_z_iso
(leftwhiskering_functor N (F x))
(pointwise_z_iso_from_preserves_tensor_strongly pts y z)).
set (ptsfz := functor_on_z_iso
(rightwhiskering_functor N (F z))
(pointwise_z_iso_from_preserves_tensor_strongly pts x y)).
apply (z_iso_inv_on_left _ _ _ _ ptsfx).
apply pathsinv0.
apply (z_iso_inv_on_left _ _ _ _ ptsx_yz).
rewrite assoc'.
rewrite assoc'.
etrans.
2: {
apply maponpaths.
rewrite assoc.
exact (ptα x y z).
}
etrans.
2: {
rewrite assoc'.
apply maponpaths.
rewrite assoc.
apply maponpaths_2.
rewrite assoc.
apply maponpaths_2.
exact (! pr222 ptsfz).
}
rewrite id_left.
etrans.
2: {
rewrite assoc.
apply maponpaths_2.
exact (! pr222 ptsxy_z).
}
apply (! id_left _).
set (ptsxy_z := pointwise_z_iso_from_preserves_tensor_strongly pts (x ⊗_{M} y) z).
set (ptsfx := functor_on_z_iso
(leftwhiskering_functor N (F x))
(pointwise_z_iso_from_preserves_tensor_strongly pts y z)).
set (ptsfz := functor_on_z_iso
(rightwhiskering_functor N (F z))
(pointwise_z_iso_from_preserves_tensor_strongly pts x y)).
apply (z_iso_inv_on_left _ _ _ _ ptsfx).
apply pathsinv0.
apply (z_iso_inv_on_left _ _ _ _ ptsx_yz).
rewrite assoc'.
rewrite assoc'.
etrans.
2: {
apply maponpaths.
rewrite assoc.
exact (ptα x y z).
}
etrans.
2: {
rewrite assoc'.
apply maponpaths.
rewrite assoc.
apply maponpaths_2.
rewrite assoc.
apply maponpaths_2.
exact (! pr222 ptsfz).
}
rewrite id_left.
etrans.
2: {
rewrite assoc.
apply maponpaths_2.
exact (! pr222 ptsxy_z).
}
apply (! id_left _).
Lemma preserves_tensorinv_nat_right
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
{pt : preserves_tensordata M N F}
(pts : preserves_tensor_strongly pt)
(ptrn : preserves_tensor_nat_right pt)
(x1 x2 y : C)
(f : C⟦x1,x2⟧)
: (is_z_isomorphism_mor (pts x1 y)) · # F f ⊗^{ N}_{r} F y
=
# F (f ⊗^{ M}_{r} y) · (is_z_isomorphism_mor (pts x2 y)).
Show proof.
set (ptiso := pt x1 y ,, pts x1 y : z_iso _ _).
apply (z_iso_inv_on_right _ _ _ ptiso).
rewrite assoc.
etrans.
2: {
apply maponpaths_2.
apply ptrn.
}
rewrite assoc'.
unfold is_z_isomorphism_mor.
rewrite (pr12 (pts x2 y)).
apply (! id_right _).
apply (z_iso_inv_on_right _ _ _ ptiso).
rewrite assoc.
etrans.
2: {
apply maponpaths_2.
apply ptrn.
}
rewrite assoc'.
unfold is_z_isomorphism_mor.
rewrite (pr12 (pts x2 y)).
apply (! id_right _).
Lemma preserves_tensorinv_nat_left
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
{pt : preserves_tensordata M N F}
(pts : preserves_tensor_strongly pt)
(ptrn : preserves_tensor_nat_left pt)
(x1 x2 y : C)
(f : C⟦x1,x2⟧)
: (is_z_isomorphism_mor (pts y x1)) · F y ⊗^{ N}_{l} # F f
=
# F (y ⊗^{ M}_{l} f) · (is_z_isomorphism_mor (pts y x2)).
Show proof.
set (ptiso := pt y x1 ,, pts y x1 : z_iso _ _).
apply (z_iso_inv_on_right _ _ _ ptiso).
rewrite assoc.
etrans.
2: {
apply maponpaths_2.
apply ptrn.
}
rewrite assoc'.
unfold is_z_isomorphism_mor.
rewrite (pr12 (pts y x2)).
apply (! id_right _).
apply (z_iso_inv_on_right _ _ _ ptiso).
rewrite assoc.
etrans.
2: {
apply maponpaths_2.
apply ptrn.
}
rewrite assoc'.
unfold is_z_isomorphism_mor.
rewrite (pr12 (pts y x2)).
apply (! id_right _).
Definition preserves_unit_strongly
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
(pu : preserves_unit M N F)
: UU
:= is_z_isomorphism pu.
Definition fmonoidal_stronglaws
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
(pt : preserves_tensordata M N F)
(pu : preserves_unit M N F)
: UU
:= preserves_tensor_strongly pt × preserves_unit_strongly pu.
Lemma isaprop_fmonoidal_stronglaws
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
(Fm : fmonoidal_data M N F)
: isaprop (fmonoidal_stronglaws (pr1 Fm) (pr2 Fm)).
Show proof.
2. Strong monoidal functors
Definition fmonoidal
{C D : category}
(M : monoidal C)
(N : monoidal D)
(F : functor C D)
: UU :=
∑ (Fm : fmonoidal_lax M N F),
fmonoidal_stronglaws (fmonoidal_preservestensordata Fm) (fmonoidal_preservesunit Fm).
Definition fmonoidal_fmonoidallax
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
(Fm : fmonoidal M N F)
: fmonoidal_lax M N F
:= pr1 Fm.
Coercion fmonoidal_fmonoidallax : fmonoidal >-> fmonoidal_lax.
Definition fmonoidal_preservestensorstrongly
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
(Fm : fmonoidal M N F)
: preserves_tensor_strongly (fmonoidal_preservestensordata Fm)
:= pr12 Fm.
Definition fmonoidal_preservesunitstrongly
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
(Fm : fmonoidal M N F)
: preserves_unit_strongly (fmonoidal_preservesunit Fm)
:= pr22 Fm.
Lemma fmonoidal_eq
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fmd fmd' : fmonoidal M N F) :
pr1 fmd = pr1 fmd' -> fmd = fmd'.
Show proof.
{C D : category}
(M : monoidal C)
(N : monoidal D)
(F : functor C D)
: UU :=
∑ (Fm : fmonoidal_lax M N F),
fmonoidal_stronglaws (fmonoidal_preservestensordata Fm) (fmonoidal_preservesunit Fm).
Definition fmonoidal_fmonoidallax
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
(Fm : fmonoidal M N F)
: fmonoidal_lax M N F
:= pr1 Fm.
Coercion fmonoidal_fmonoidallax : fmonoidal >-> fmonoidal_lax.
Definition fmonoidal_preservestensorstrongly
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
(Fm : fmonoidal M N F)
: preserves_tensor_strongly (fmonoidal_preservestensordata Fm)
:= pr12 Fm.
Definition fmonoidal_preservesunitstrongly
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
(Fm : fmonoidal M N F)
: preserves_unit_strongly (fmonoidal_preservesunit Fm)
:= pr22 Fm.
Lemma fmonoidal_eq
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
(fmd fmd' : fmonoidal M N F) :
pr1 fmd = pr1 fmd' -> fmd = fmd'.
Show proof.
We now show that everything behaves as expected
Definition functor_imageoftensor
{C D : category}
(M : monoidal C)
(F : functor C D)
: bifunctor C C D
:= compose_bifunctor_with_functor M F.
Definition functor_tensorofimages
{C D : category}
(F : functor C D)
(N : monoidal D)
: bifunctor C C D
:= compose_functor_with_bifunctor F F N.
Definition preserves_tensor_is_nattrans_type
{C D : category}
(M : monoidal C)
(N : monoidal D)
(F : functor C D)
: UU
:= binat_trans (functor_tensorofimages F N) (functor_imageoftensor M F).
Definition preservestensor_is_nattrans
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
{pt : preserves_tensordata M N F}
(ptnl : preserves_tensor_nat_left pt)
(ptnr : preserves_tensor_nat_right pt)
: preserves_tensor_is_nattrans_type M N F.
Show proof.
Lemma preservestensor_is_nattrans_full
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
{pt : preserves_tensordata M N F}
(ptnl : preserves_tensor_nat_left pt)
(ptnr : preserves_tensor_nat_right pt)
: ∏ (x1 x2 y1 y2 : C) (f : C⟦x1,x2⟧) (g : C⟦y1,y2⟧),
# F f ⊗^{ N} # F g · pt x2 y2 = pt x1 y1 · # F (f ⊗^{ M} g).
Show proof.
Definition preserves_tensor_inv_is_nattrans_type
{C D : category}
(M : monoidal C) (N : monoidal D)
(F : functor C D)
: UU
:= binat_trans (functor_imageoftensor M F) (functor_tensorofimages F N).
Definition preservestensor_inv_is_nattrans
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
{pt : preserves_tensordata M N F}
(ptnl : preserves_tensor_nat_left pt)
(ptnr : preserves_tensor_nat_right pt)
(ptstr: preserves_tensor_strongly pt)
: preserves_tensor_inv_is_nattrans_type M N F
:= inv_binattrans_from_binatiso(α:=preservestensor_is_nattrans ptnl ptnr) ptstr.
Definition preserves_leftunitality'
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
{pt : preserves_tensordata M N F}
{pu : preserves_unit M N F}
(plu : preserves_leftunitality pt pu)
: ∏ (x : C),
(pu ⊗^{N} (identity (F x))) · (pt I_{M} x) · (#F (lu^{M}_{x}))
=
lu^{N}_{F x}.
Show proof.
Definition preserves_rightunitality'
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
{pt : preserves_tensordata M N F}
{pu : preserves_unit M N F}
(pru : preserves_rightunitality pt pu)
: ∏ (x : C),
((identity (F x)) ⊗^{N} pu) · (pt x I_{M}) · (#F (ru^{M}_{x}))
=
ru^{N}_{F x}.
Show proof.
Definition preserves_leftunitality''
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D} (Fm : fmonoidal M N F)
: ∏ (x : C),
(pr1 (fmonoidal_preservestensorstrongly Fm I_{M} x))
· (pr1 (fmonoidal_preservesunitstrongly Fm) ⊗^{N} (identity (F x)))
· lu^{N}_{F x}
=
#F (lu^{M}_{x}).
Show proof.
Proposition strong_fmonoidal_preserves_associativity
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
(Fm : fmonoidal M N F)
(x y z : C)
: # F (α^{M}_{x , y , z})
=
inv_from_z_iso (_ ,, fmonoidal_preservestensorstrongly Fm _ _)
· (inv_from_z_iso (_ ,, fmonoidal_preservestensorstrongly Fm _ _) ⊗^{N}_{r} _)
· (α^{N}_{ F x , F y , F z})
· (F x ⊗^{ N}_{l} fmonoidal_preservestensordata Fm y z)
· fmonoidal_preservestensordata Fm x (y ⊗_{ M} z).
Show proof.
{C D : category}
(M : monoidal C)
(F : functor C D)
: bifunctor C C D
:= compose_bifunctor_with_functor M F.
Definition functor_tensorofimages
{C D : category}
(F : functor C D)
(N : monoidal D)
: bifunctor C C D
:= compose_functor_with_bifunctor F F N.
Definition preserves_tensor_is_nattrans_type
{C D : category}
(M : monoidal C)
(N : monoidal D)
(F : functor C D)
: UU
:= binat_trans (functor_tensorofimages F N) (functor_imageoftensor M F).
Definition preservestensor_is_nattrans
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
{pt : preserves_tensordata M N F}
(ptnl : preserves_tensor_nat_left pt)
(ptnr : preserves_tensor_nat_right pt)
: preserves_tensor_is_nattrans_type M N F.
Show proof.
use make_binat_trans.
- use make_binat_trans_data.
intros x y.
apply pt.
- use tpair.
+ intros x y1 y2 g.
apply ptnl.
+ intros x1 x2 y f.
apply ptnr.
- use make_binat_trans_data.
intros x y.
apply pt.
- use tpair.
+ intros x y1 y2 g.
apply ptnl.
+ intros x1 x2 y f.
apply ptnr.
Lemma preservestensor_is_nattrans_full
{C D : category}
{M : monoidal C}
{N : monoidal D}
{F : functor C D}
{pt : preserves_tensordata M N F}
(ptnl : preserves_tensor_nat_left pt)
(ptnr : preserves_tensor_nat_right pt)
: ∏ (x1 x2 y1 y2 : C) (f : C⟦x1,x2⟧) (g : C⟦y1,y2⟧),
# F f ⊗^{ N} # F g · pt x2 y2 = pt x1 y1 · # F (f ⊗^{ M} g).
Show proof.
intros.
etrans.
{ unfold functoronmorphisms1.
rewrite assoc'.
rewrite ptnl.
apply assoc. }
rewrite ptnr.
rewrite assoc'.
apply maponpaths.
apply pathsinv0, functor_comp.
etrans.
{ unfold functoronmorphisms1.
rewrite assoc'.
rewrite ptnl.
apply assoc. }
rewrite ptnr.
rewrite assoc'.
apply maponpaths.
apply pathsinv0, functor_comp.
Definition preserves_tensor_inv_is_nattrans_type
{C D : category}
(M : monoidal C) (N : monoidal D)
(F : functor C D)
: UU
:= binat_trans (functor_imageoftensor M F) (functor_tensorofimages F N).
Definition preservestensor_inv_is_nattrans
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
{pt : preserves_tensordata M N F}
(ptnl : preserves_tensor_nat_left pt)
(ptnr : preserves_tensor_nat_right pt)
(ptstr: preserves_tensor_strongly pt)
: preserves_tensor_inv_is_nattrans_type M N F
:= inv_binattrans_from_binatiso(α:=preservestensor_is_nattrans ptnl ptnr) ptstr.
Definition preserves_leftunitality'
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
{pt : preserves_tensordata M N F}
{pu : preserves_unit M N F}
(plu : preserves_leftunitality pt pu)
: ∏ (x : C),
(pu ⊗^{N} (identity (F x))) · (pt I_{M} x) · (#F (lu^{M}_{x}))
=
lu^{N}_{F x}.
Show proof.
Definition preserves_rightunitality'
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
{pt : preserves_tensordata M N F}
{pu : preserves_unit M N F}
(pru : preserves_rightunitality pt pu)
: ∏ (x : C),
((identity (F x)) ⊗^{N} pu) · (pt x I_{M}) · (#F (ru^{M}_{x}))
=
ru^{N}_{F x}.
Show proof.
Definition preserves_leftunitality''
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D} (Fm : fmonoidal M N F)
: ∏ (x : C),
(pr1 (fmonoidal_preservestensorstrongly Fm I_{M} x))
· (pr1 (fmonoidal_preservesunitstrongly Fm) ⊗^{N} (identity (F x)))
· lu^{N}_{F x}
=
#F (lu^{M}_{x}).
Show proof.
intro x.
set (plu := preserves_leftunitality' (fmonoidal_preservesleftunitality (pr1 Fm)) x).
rewrite (! plu).
rewrite ! assoc.
etrans. {
apply maponpaths_2.
apply maponpaths_2.
rewrite assoc'.
apply maponpaths.
unfold functoronmorphisms1.
do 2 rewrite (bifunctor_leftid N).
do 2 rewrite id_right.
rewrite <- (bifunctor_rightcomp N).
apply maponpaths.
apply (fmonoidal_preservesunitstrongly Fm).
}
rewrite bifunctor_rightid.
rewrite id_right.
etrans. {
apply maponpaths_2.
apply (fmonoidal_preservestensorstrongly Fm).
}
apply id_left.
set (plu := preserves_leftunitality' (fmonoidal_preservesleftunitality (pr1 Fm)) x).
rewrite (! plu).
rewrite ! assoc.
etrans. {
apply maponpaths_2.
apply maponpaths_2.
rewrite assoc'.
apply maponpaths.
unfold functoronmorphisms1.
do 2 rewrite (bifunctor_leftid N).
do 2 rewrite id_right.
rewrite <- (bifunctor_rightcomp N).
apply maponpaths.
apply (fmonoidal_preservesunitstrongly Fm).
}
rewrite bifunctor_rightid.
rewrite id_right.
etrans. {
apply maponpaths_2.
apply (fmonoidal_preservestensorstrongly Fm).
}
apply id_left.
Proposition strong_fmonoidal_preserves_associativity
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
(Fm : fmonoidal M N F)
(x y z : C)
: # F (α^{M}_{x , y , z})
=
inv_from_z_iso (_ ,, fmonoidal_preservestensorstrongly Fm _ _)
· (inv_from_z_iso (_ ,, fmonoidal_preservestensorstrongly Fm _ _) ⊗^{N}_{r} _)
· (α^{N}_{ F x , F y , F z})
· (F x ⊗^{ N}_{l} fmonoidal_preservestensordata Fm y z)
· fmonoidal_preservestensordata Fm x (y ⊗_{ M} z).
Show proof.
rewrite !assoc'.
refine (!_).
etrans.
{
do 2 apply maponpaths.
rewrite !assoc.
exact (!(fmonoidal_preservesassociativity Fm x y z)).
}
rewrite !assoc.
refine (_ @ id_left _).
apply maponpaths_2.
rewrite !assoc'.
etrans.
{
apply maponpaths.
rewrite !assoc.
apply maponpaths_2.
etrans.
{
refine (!_).
apply (bifunctor_rightcomp N).
}
apply maponpaths.
apply z_iso_after_z_iso_inv.
}
rewrite (bifunctor_rightid N).
rewrite id_left.
apply z_iso_after_z_iso_inv.
refine (!_).
etrans.
{
do 2 apply maponpaths.
rewrite !assoc.
exact (!(fmonoidal_preservesassociativity Fm x y z)).
}
rewrite !assoc.
refine (_ @ id_left _).
apply maponpaths_2.
rewrite !assoc'.
etrans.
{
apply maponpaths.
rewrite !assoc.
apply maponpaths_2.
etrans.
{
refine (!_).
apply (bifunctor_rightcomp N).
}
apply maponpaths.
apply z_iso_after_z_iso_inv.
}
rewrite (bifunctor_rightid N).
rewrite id_left.
apply z_iso_after_z_iso_inv.
3. Strict monoidal functors
Definition preserves_tensor_strictly
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
(pt : preserves_tensordata M N F)
: UU
:= ∏ (x y : C), ∑ (pf : (F x) ⊗_{N} (F y) = F (x ⊗_{M} y)),
pt x y = transportf _ pf (identity ((F x) ⊗_{N} (F y))).
Lemma strictlytensorpreserving_is_strong
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
{pt : preserves_tensordata M N F}
(pst : preserves_tensor_strictly pt)
: preserves_tensor_strongly pt.
Show proof.
Definition preserves_unit_strictly
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
(pu : preserves_unit M N F) : UU
:= ∑ (pf : I_{N} = (F I_{M})),
pu = transportf _ pf (identity I_{N}).
Definition strictlyunitpreserving_is_strong
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
{pu : preserves_unit M N F}
(pus : preserves_unit_strictly pu)
: preserves_unit_strongly pu.
Show proof.
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
(pt : preserves_tensordata M N F)
: UU
:= ∏ (x y : C), ∑ (pf : (F x) ⊗_{N} (F y) = F (x ⊗_{M} y)),
pt x y = transportf _ pf (identity ((F x) ⊗_{N} (F y))).
Lemma strictlytensorpreserving_is_strong
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
{pt : preserves_tensordata M N F}
(pst : preserves_tensor_strictly pt)
: preserves_tensor_strongly pt.
Show proof.
intros x y.
use (iso_stable_under_equalitytransportf
(pr2 (pst x y))
(is_z_isomorphism_identity (F x ⊗_{N} F y))).
use (iso_stable_under_equalitytransportf
(pr2 (pst x y))
(is_z_isomorphism_identity (F x ⊗_{N} F y))).
Definition preserves_unit_strictly
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
(pu : preserves_unit M N F) : UU
:= ∑ (pf : I_{N} = (F I_{M})),
pu = transportf _ pf (identity I_{N}).
Definition strictlyunitpreserving_is_strong
{C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
{pu : preserves_unit M N F}
(pus : preserves_unit_strictly pu)
: preserves_unit_strongly pu.
Show proof.
4. Symmetric monoidal functors
Definition is_symmetric_monoidal_functor
{C D : category}
{M : monoidal C} {N : monoidal D}
(HM : symmetric M) (HN : symmetric N)
{F : functor C D}
(HF : fmonoidal_lax M N F)
: UU
:= ∏ (x y : C),
monoidal_braiding_data (symmetric_to_braiding HN) (F x) (F y)
· fmonoidal_preservestensordata HF y x
=
fmonoidal_preservestensordata HF x y
· #F(monoidal_braiding_data (symmetric_to_braiding HM) x y).
Lemma isaprop_is_symmetric_monoidal_functor
{C D : category}
{M : monoidal C} {N : monoidal D}
(HM : symmetric M) (HN : symmetric N)
{F : functor C D}
(HF : fmonoidal_lax M N F) :
isaprop (is_symmetric_monoidal_functor HM HN HF).
Show proof.
{C D : category}
{M : monoidal C} {N : monoidal D}
(HM : symmetric M) (HN : symmetric N)
{F : functor C D}
(HF : fmonoidal_lax M N F)
: UU
:= ∏ (x y : C),
monoidal_braiding_data (symmetric_to_braiding HN) (F x) (F y)
· fmonoidal_preservestensordata HF y x
=
fmonoidal_preservestensordata HF x y
· #F(monoidal_braiding_data (symmetric_to_braiding HM) x y).
Lemma isaprop_is_symmetric_monoidal_functor
{C D : category}
{M : monoidal C} {N : monoidal D}
(HM : symmetric M) (HN : symmetric N)
{F : functor C D}
(HF : fmonoidal_lax M N F) :
isaprop (is_symmetric_monoidal_functor HM HN HF).
Show proof.
5. The identity is strong monoidal
towards a bicategory of monoidal categories
Definition identity_fmonoidal_data
{C : category}
(M : monoidal C)
: fmonoidal_data M M (functor_identity C).
Show proof.
Lemma identity_fmonoidal_laxlaws
{C : category}
(M : monoidal C)
: fmonoidal_laxlaws (identity_fmonoidal_data M).
Show proof.
Definition identity_fmonoidal_lax
{C : category}
(M : monoidal C)
: fmonoidal_lax M M (functor_identity C)
:= identity_fmonoidal_data M ,, identity_fmonoidal_laxlaws M.
Definition identity_fmonoidal_stronglaws
{C : category}
(M : monoidal C)
: fmonoidal_stronglaws
(fmonoidal_preservestensordata (identity_fmonoidal_lax M))
(fmonoidal_preservesunit (identity_fmonoidal_lax M)).
Show proof.
Definition identity_fmonoidal
{C : category}
(M : monoidal C)
: fmonoidal M M (functor_identity C)
:= identity_fmonoidal_lax M ,, identity_fmonoidal_stronglaws M.
Proposition is_symmetric_monoidal_identity
{C : category}
{M : monoidal C}
(HM : symmetric M)
: is_symmetric_monoidal_functor HM HM (identity_fmonoidal_lax M).
Show proof.
{C : category}
(M : monoidal C)
: fmonoidal_data M M (functor_identity C).
Show proof.
Lemma identity_fmonoidal_laxlaws
{C : category}
(M : monoidal C)
: fmonoidal_laxlaws (identity_fmonoidal_data M).
Show proof.
repeat split; red; unfold fmonoidal_preservesunit, fmonoidal_preservestensordata; cbn; intros.
- rewrite id_left. apply id_right.
- rewrite id_left. apply id_right.
- do 2 rewrite id_right.
rewrite (bifunctor_rightid M).
rewrite (bifunctor_leftid M).
rewrite id_right.
apply id_left.
- rewrite id_right.
rewrite (bifunctor_rightid M).
apply id_left.
- rewrite id_right.
rewrite (bifunctor_leftid M).
apply id_left.
- rewrite id_left. apply id_right.
- rewrite id_left. apply id_right.
- do 2 rewrite id_right.
rewrite (bifunctor_rightid M).
rewrite (bifunctor_leftid M).
rewrite id_right.
apply id_left.
- rewrite id_right.
rewrite (bifunctor_rightid M).
apply id_left.
- rewrite id_right.
rewrite (bifunctor_leftid M).
apply id_left.
Definition identity_fmonoidal_lax
{C : category}
(M : monoidal C)
: fmonoidal_lax M M (functor_identity C)
:= identity_fmonoidal_data M ,, identity_fmonoidal_laxlaws M.
Definition identity_fmonoidal_stronglaws
{C : category}
(M : monoidal C)
: fmonoidal_stronglaws
(fmonoidal_preservestensordata (identity_fmonoidal_lax M))
(fmonoidal_preservesunit (identity_fmonoidal_lax M)).
Show proof.
Definition identity_fmonoidal
{C : category}
(M : monoidal C)
: fmonoidal M M (functor_identity C)
:= identity_fmonoidal_lax M ,, identity_fmonoidal_stronglaws M.
Proposition is_symmetric_monoidal_identity
{C : category}
{M : monoidal C}
(HM : symmetric M)
: is_symmetric_monoidal_functor HM HM (identity_fmonoidal_lax M).
Show proof.
6. Composition preserves lax/strongly monoidal functors
Definition comp_fmonoidal_data
{C D E : category}
{M : monoidal C} {N : monoidal D} {O : monoidal E}
{F : C ⟶ D} {G : D ⟶ E}
(Fm : fmonoidal_lax M N F) (Gm : fmonoidal_lax N O G)
: fmonoidal_data M O (F ∙ G).
Show proof.
Lemma comp_fmonoidal_laxlaws
{C D E : category}
{M : monoidal C} {N : monoidal D} {O : monoidal E}
{F : C ⟶ D} {G : D ⟶ E}
(Fm : fmonoidal_lax M N F) (Gm : fmonoidal_lax N O G)
: fmonoidal_laxlaws (comp_fmonoidal_data Fm Gm).
Show proof.
Definition comp_fmonoidal_lax
{C D E : category}
{M : monoidal C} {N : monoidal D} {O : monoidal E}
{F : C ⟶ D} {G : D ⟶ E}
(Fm : fmonoidal_lax M N F) (Gm : fmonoidal_lax N O G)
: fmonoidal_lax M O (F ∙ G)
:= comp_fmonoidal_data Fm Gm ,, comp_fmonoidal_laxlaws Fm Gm.
Section CompStrongMonoidal.
Context {C D E : category}
{M : monoidal C} {N : monoidal D} {O : monoidal E}
{F : C ⟶ D} {G : D ⟶ E}
(Fm : fmonoidal M N F) (Gm : fmonoidal N O G).
Let comp_fmnoidal_unit_inv
: G (F I_{M}) --> I_{O}
:= #G (pr1 (fmonoidal_preservesunitstrongly Fm))
· pr1 (fmonoidal_preservesunitstrongly Gm).
Let comp_fmonoidal_tensor_inv
(x y : C)
: G (F (x ⊗_{ M } y)) --> G (F x) ⊗_{ O } G (F y)
:= #G (pr1 (fmonoidal_preservestensorstrongly Fm x y))
· pr1 (fmonoidal_preservestensorstrongly Gm (F x) (F y)).
Lemma comp_fmonoidal_tensor_inv_laws
(x y : C)
: is_inverse_in_precat
(fmonoidal_preservestensordata (comp_fmonoidal_lax Fm Gm) x y)
(comp_fmonoidal_tensor_inv x y).
Show proof.
Lemma comp_fmonoidal_unit_inv_laws
: is_inverse_in_precat
(fmonoidal_preservesunit (comp_fmonoidal_lax Fm Gm))
comp_fmnoidal_unit_inv.
Show proof.
Definition comp_fmonoidal_stronglaws
: fmonoidal_stronglaws
(fmonoidal_preservestensordata (comp_fmonoidal_lax Fm Gm))
(fmonoidal_preservesunit (comp_fmonoidal_lax Fm Gm)).
Show proof.
Definition comp_fmonoidal
: fmonoidal M O (F ∙ G)
:= comp_fmonoidal_lax Fm Gm ,, comp_fmonoidal_stronglaws.
End CompStrongMonoidal.
Proposition is_symmetric_monoidal_comp
{C D E : category}
{M : monoidal C}
{N : monoidal D}
{O : monoidal E}
{HM : symmetric M}
{HN : symmetric N}
{HO : symmetric O}
{F : C ⟶ D}
{G : D ⟶ E}
{HF : fmonoidal_lax M N F}
{HG : fmonoidal_lax N O G}
(HHF : is_symmetric_monoidal_functor HM HN HF)
(HHG : is_symmetric_monoidal_functor HN HO HG)
: is_symmetric_monoidal_functor HM HO (comp_fmonoidal_lax HF HG).
Show proof.
{C D E : category}
{M : monoidal C} {N : monoidal D} {O : monoidal E}
{F : C ⟶ D} {G : D ⟶ E}
(Fm : fmonoidal_lax M N F) (Gm : fmonoidal_lax N O G)
: fmonoidal_data M O (F ∙ G).
Show proof.
split.
- intros x y.
exact (fmonoidal_preservestensordata Gm (F x) (F y)
· #G (fmonoidal_preservestensordata Fm x y)).
- exact (fmonoidal_preservesunit Gm
· #G (fmonoidal_preservesunit Fm)).
- intros x y.
exact (fmonoidal_preservestensordata Gm (F x) (F y)
· #G (fmonoidal_preservestensordata Fm x y)).
- exact (fmonoidal_preservesunit Gm
· #G (fmonoidal_preservesunit Fm)).
Lemma comp_fmonoidal_laxlaws
{C D E : category}
{M : monoidal C} {N : monoidal D} {O : monoidal E}
{F : C ⟶ D} {G : D ⟶ E}
(Fm : fmonoidal_lax M N F) (Gm : fmonoidal_lax N O G)
: fmonoidal_laxlaws (comp_fmonoidal_data Fm Gm).
Show proof.
repeat split; red; cbn; unfold fmonoidal_preservesunit, fmonoidal_preservestensordata; cbn; intros.
- etrans.
2: { rewrite assoc'. apply maponpaths. apply functor_comp. }
etrans.
2: { do 2 apply maponpaths. apply fmonoidal_preservestensornatleft. }
rewrite functor_comp.
repeat rewrite assoc.
apply cancel_postcomposition.
apply fmonoidal_preservestensornatleft.
- etrans.
2: { rewrite assoc'. apply maponpaths. apply functor_comp. }
etrans.
2: { do 2 apply maponpaths. apply fmonoidal_preservestensornatright. }
rewrite functor_comp.
repeat rewrite assoc.
apply cancel_postcomposition.
apply fmonoidal_preservestensornatright.
- assert (auxF := fmonoidal_preservesassociativity Fm x y z).
unfold fmonoidal_preservestensordata in auxF.
assert (auxG := fmonoidal_preservesassociativity Gm (F x) (F y) (F z)).
unfold fmonoidal_preservestensordata in auxG.
rewrite (bifunctor_leftcomp O).
rewrite (bifunctor_rightcomp O).
etrans.
2: { repeat rewrite assoc. apply cancel_postcomposition.
repeat rewrite assoc'. do 2 apply maponpaths.
apply pathsinv0, fmonoidal_preservestensornatleft. }
etrans.
2: { apply cancel_postcomposition.
repeat rewrite assoc. apply cancel_postcomposition.
exact auxG. }
repeat rewrite assoc'. apply maponpaths.
etrans.
2: { apply maponpaths.
rewrite <- functor_comp.
apply functor_comp. }
etrans.
2: { do 2 apply maponpaths.
rewrite assoc.
exact auxF. }
do 2 rewrite functor_comp.
repeat rewrite assoc.
do 2 apply cancel_postcomposition.
apply fmonoidal_preservestensornatright.
- assert (auxF := fmonoidal_preservesleftunitality Fm x).
assert (auxG := fmonoidal_preservesleftunitality Gm (F x)).
unfold fmonoidal_preservesunit, fmonoidal_preservestensordata in auxF, auxG.
etrans; [| exact auxG].
clear auxG.
rewrite (bifunctor_rightcomp O).
rewrite <- auxF.
clear auxF.
do 2 rewrite functor_comp.
repeat rewrite assoc.
do 2 apply cancel_postcomposition.
repeat rewrite assoc'.
apply maponpaths.
apply fmonoidal_preservestensornatright.
- assert (auxF := fmonoidal_preservesrightunitality Fm x).
assert (auxG := fmonoidal_preservesrightunitality Gm (F x)).
unfold fmonoidal_preservesunit, fmonoidal_preservestensordata in auxF, auxG.
etrans; [| exact auxG].
clear auxG.
rewrite (bifunctor_leftcomp O).
rewrite <- auxF.
clear auxF.
do 2 rewrite functor_comp.
repeat rewrite assoc.
do 2 apply cancel_postcomposition.
repeat rewrite assoc'.
apply maponpaths.
apply fmonoidal_preservestensornatleft.
- etrans.
2: { rewrite assoc'. apply maponpaths. apply functor_comp. }
etrans.
2: { do 2 apply maponpaths. apply fmonoidal_preservestensornatleft. }
rewrite functor_comp.
repeat rewrite assoc.
apply cancel_postcomposition.
apply fmonoidal_preservestensornatleft.
- etrans.
2: { rewrite assoc'. apply maponpaths. apply functor_comp. }
etrans.
2: { do 2 apply maponpaths. apply fmonoidal_preservestensornatright. }
rewrite functor_comp.
repeat rewrite assoc.
apply cancel_postcomposition.
apply fmonoidal_preservestensornatright.
- assert (auxF := fmonoidal_preservesassociativity Fm x y z).
unfold fmonoidal_preservestensordata in auxF.
assert (auxG := fmonoidal_preservesassociativity Gm (F x) (F y) (F z)).
unfold fmonoidal_preservestensordata in auxG.
rewrite (bifunctor_leftcomp O).
rewrite (bifunctor_rightcomp O).
etrans.
2: { repeat rewrite assoc. apply cancel_postcomposition.
repeat rewrite assoc'. do 2 apply maponpaths.
apply pathsinv0, fmonoidal_preservestensornatleft. }
etrans.
2: { apply cancel_postcomposition.
repeat rewrite assoc. apply cancel_postcomposition.
exact auxG. }
repeat rewrite assoc'. apply maponpaths.
etrans.
2: { apply maponpaths.
rewrite <- functor_comp.
apply functor_comp. }
etrans.
2: { do 2 apply maponpaths.
rewrite assoc.
exact auxF. }
do 2 rewrite functor_comp.
repeat rewrite assoc.
do 2 apply cancel_postcomposition.
apply fmonoidal_preservestensornatright.
- assert (auxF := fmonoidal_preservesleftunitality Fm x).
assert (auxG := fmonoidal_preservesleftunitality Gm (F x)).
unfold fmonoidal_preservesunit, fmonoidal_preservestensordata in auxF, auxG.
etrans; [| exact auxG].
clear auxG.
rewrite (bifunctor_rightcomp O).
rewrite <- auxF.
clear auxF.
do 2 rewrite functor_comp.
repeat rewrite assoc.
do 2 apply cancel_postcomposition.
repeat rewrite assoc'.
apply maponpaths.
apply fmonoidal_preservestensornatright.
- assert (auxF := fmonoidal_preservesrightunitality Fm x).
assert (auxG := fmonoidal_preservesrightunitality Gm (F x)).
unfold fmonoidal_preservesunit, fmonoidal_preservestensordata in auxF, auxG.
etrans; [| exact auxG].
clear auxG.
rewrite (bifunctor_leftcomp O).
rewrite <- auxF.
clear auxF.
do 2 rewrite functor_comp.
repeat rewrite assoc.
do 2 apply cancel_postcomposition.
repeat rewrite assoc'.
apply maponpaths.
apply fmonoidal_preservestensornatleft.
Definition comp_fmonoidal_lax
{C D E : category}
{M : monoidal C} {N : monoidal D} {O : monoidal E}
{F : C ⟶ D} {G : D ⟶ E}
(Fm : fmonoidal_lax M N F) (Gm : fmonoidal_lax N O G)
: fmonoidal_lax M O (F ∙ G)
:= comp_fmonoidal_data Fm Gm ,, comp_fmonoidal_laxlaws Fm Gm.
Section CompStrongMonoidal.
Context {C D E : category}
{M : monoidal C} {N : monoidal D} {O : monoidal E}
{F : C ⟶ D} {G : D ⟶ E}
(Fm : fmonoidal M N F) (Gm : fmonoidal N O G).
Let comp_fmnoidal_unit_inv
: G (F I_{M}) --> I_{O}
:= #G (pr1 (fmonoidal_preservesunitstrongly Fm))
· pr1 (fmonoidal_preservesunitstrongly Gm).
Let comp_fmonoidal_tensor_inv
(x y : C)
: G (F (x ⊗_{ M } y)) --> G (F x) ⊗_{ O } G (F y)
:= #G (pr1 (fmonoidal_preservestensorstrongly Fm x y))
· pr1 (fmonoidal_preservestensorstrongly Gm (F x) (F y)).
Lemma comp_fmonoidal_tensor_inv_laws
(x y : C)
: is_inverse_in_precat
(fmonoidal_preservestensordata (comp_fmonoidal_lax Fm Gm) x y)
(comp_fmonoidal_tensor_inv x y).
Show proof.
unfold comp_fmonoidal_tensor_inv.
split.
- cbn.
etrans.
{
rewrite !assoc'.
apply maponpaths.
rewrite assoc.
apply cancel_postcomposition.
rewrite <- functor_comp.
apply maponpaths.
apply (pr12 (fmonoidal_preservestensorstrongly Fm x y)).
}
rewrite functor_id.
rewrite id_left.
apply (pr12 (fmonoidal_preservestensorstrongly Gm (F x) (F y))).
- cbn.
etrans.
{
rewrite !assoc'.
apply maponpaths.
rewrite assoc.
apply cancel_postcomposition.
apply (pr22 (fmonoidal_preservestensorstrongly Gm (F x) (F y))).
}
rewrite id_left.
rewrite <- functor_comp.
etrans.
{
apply maponpaths.
apply (pr22 (fmonoidal_preservestensorstrongly Fm x y)).
}
apply functor_id.
split.
- cbn.
etrans.
{
rewrite !assoc'.
apply maponpaths.
rewrite assoc.
apply cancel_postcomposition.
rewrite <- functor_comp.
apply maponpaths.
apply (pr12 (fmonoidal_preservestensorstrongly Fm x y)).
}
rewrite functor_id.
rewrite id_left.
apply (pr12 (fmonoidal_preservestensorstrongly Gm (F x) (F y))).
- cbn.
etrans.
{
rewrite !assoc'.
apply maponpaths.
rewrite assoc.
apply cancel_postcomposition.
apply (pr22 (fmonoidal_preservestensorstrongly Gm (F x) (F y))).
}
rewrite id_left.
rewrite <- functor_comp.
etrans.
{
apply maponpaths.
apply (pr22 (fmonoidal_preservestensorstrongly Fm x y)).
}
apply functor_id.
Lemma comp_fmonoidal_unit_inv_laws
: is_inverse_in_precat
(fmonoidal_preservesunit (comp_fmonoidal_lax Fm Gm))
comp_fmnoidal_unit_inv.
Show proof.
unfold comp_fmnoidal_unit_inv.
split.
- cbn.
etrans.
{
rewrite !assoc'.
apply maponpaths.
rewrite assoc.
apply cancel_postcomposition.
rewrite <- functor_comp.
apply maponpaths.
apply (pr12 (fmonoidal_preservesunitstrongly Fm)).
}
rewrite functor_id.
rewrite id_left.
apply (pr12 (fmonoidal_preservesunitstrongly Gm)).
- cbn.
etrans.
{
rewrite !assoc'.
apply maponpaths.
rewrite assoc.
apply cancel_postcomposition.
apply (pr22 (fmonoidal_preservesunitstrongly Gm)).
}
rewrite id_left.
rewrite <- functor_comp.
etrans.
{
apply maponpaths.
apply (pr22 (fmonoidal_preservesunitstrongly Fm)).
}
apply functor_id.
split.
- cbn.
etrans.
{
rewrite !assoc'.
apply maponpaths.
rewrite assoc.
apply cancel_postcomposition.
rewrite <- functor_comp.
apply maponpaths.
apply (pr12 (fmonoidal_preservesunitstrongly Fm)).
}
rewrite functor_id.
rewrite id_left.
apply (pr12 (fmonoidal_preservesunitstrongly Gm)).
- cbn.
etrans.
{
rewrite !assoc'.
apply maponpaths.
rewrite assoc.
apply cancel_postcomposition.
apply (pr22 (fmonoidal_preservesunitstrongly Gm)).
}
rewrite id_left.
rewrite <- functor_comp.
etrans.
{
apply maponpaths.
apply (pr22 (fmonoidal_preservesunitstrongly Fm)).
}
apply functor_id.
Definition comp_fmonoidal_stronglaws
: fmonoidal_stronglaws
(fmonoidal_preservestensordata (comp_fmonoidal_lax Fm Gm))
(fmonoidal_preservesunit (comp_fmonoidal_lax Fm Gm)).
Show proof.
split.
- intros x y.
use make_is_z_isomorphism.
+ exact (comp_fmonoidal_tensor_inv x y).
+ exact (comp_fmonoidal_tensor_inv_laws x y).
- use make_is_z_isomorphism.
+ exact comp_fmnoidal_unit_inv.
+ exact comp_fmonoidal_unit_inv_laws.
- intros x y.
use make_is_z_isomorphism.
+ exact (comp_fmonoidal_tensor_inv x y).
+ exact (comp_fmonoidal_tensor_inv_laws x y).
- use make_is_z_isomorphism.
+ exact comp_fmnoidal_unit_inv.
+ exact comp_fmonoidal_unit_inv_laws.
Definition comp_fmonoidal
: fmonoidal M O (F ∙ G)
:= comp_fmonoidal_lax Fm Gm ,, comp_fmonoidal_stronglaws.
End CompStrongMonoidal.
Proposition is_symmetric_monoidal_comp
{C D E : category}
{M : monoidal C}
{N : monoidal D}
{O : monoidal E}
{HM : symmetric M}
{HN : symmetric N}
{HO : symmetric O}
{F : C ⟶ D}
{G : D ⟶ E}
{HF : fmonoidal_lax M N F}
{HG : fmonoidal_lax N O G}
(HHF : is_symmetric_monoidal_functor HM HN HF)
(HHG : is_symmetric_monoidal_functor HN HO HG)
: is_symmetric_monoidal_functor HM HO (comp_fmonoidal_lax HF HG).
Show proof.
intros x y.
cbn.
rewrite !assoc.
etrans.
{
apply maponpaths_2.
apply HHG.
}
rewrite !assoc'.
etrans.
{
apply maponpaths.
rewrite <- functor_comp.
apply maponpaths.
apply HHF.
}
rewrite functor_comp.
apply idpath.
End MonoidalFunctors.cbn.
rewrite !assoc.
etrans.
{
apply maponpaths_2.
apply HHG.
}
rewrite !assoc'.
etrans.
{
apply maponpaths.
rewrite <- functor_comp.
apply maponpaths.
apply HHF.
}
rewrite functor_comp.
apply idpath.
7. Monoidal natural transformations
Section MonoidalNaturalTransformations.
Context {C D : category}
{M : monoidal C} {N : monoidal D}
{F G : functor C D}
(Fm : fmonoidal_lax M N F) (Gm : fmonoidal_lax M N G)
(α : F ⟹ G).
Definition is_mon_nat_trans_tensorlaw
: UU
:= ∏ (a a' : C),
fmonoidal_preservestensordata Fm a a' · α (a ⊗_{M} a')
=
α a ⊗^{N} α a' · fmonoidal_preservestensordata Gm a a'.
Definition is_mon_nat_trans_unitlaw : UU
:= fmonoidal_preservesunit Fm · α I_{M} = fmonoidal_preservesunit Gm.
Definition is_mon_nat_trans : UU := is_mon_nat_trans_tensorlaw × is_mon_nat_trans_unitlaw.
Lemma isaprop_is_mon_nat_trans : isaprop is_mon_nat_trans.
Show proof.
End MonoidalNaturalTransformations.
Section SomeMonoidalNaturalTransformations.
Lemma is_mon_nat_trans_identity {C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
(Fm : fmonoidal_lax M N F) :
is_mon_nat_trans Fm Fm (nat_trans_id _).
Show proof.
Lemma is_mon_nat_trans_comp {C D : category}
{M : monoidal C} {N : monoidal D}
{F G H : functor C D}
(Fm : fmonoidal_lax M N F)
(Gm : fmonoidal_lax M N G)
(Hm : fmonoidal_lax M N H)
(α : F ⟹ G) (β : G ⟹ H)
:
is_mon_nat_trans Fm Gm α -> is_mon_nat_trans Gm Hm β ->
is_mon_nat_trans Fm Hm (nat_trans_comp _ _ _ α β).
Show proof.
End SomeMonoidalNaturalTransformations.
Proposition is_mon_nat_trans_prewhisker
{C₁ C₂ C₃ : category}
{M₁ : monoidal C₁}
{M₂ : monoidal C₂}
{M₃ : monoidal C₃}
{F : C₁ ⟶ C₂}
(HF : fmonoidal_lax M₁ M₂ F)
{G₁ G₂ : C₂ ⟶ C₃}
{HG₁ : fmonoidal_lax M₂ M₃ G₁}
{HG₂ : fmonoidal_lax M₂ M₃ G₂}
{τ : G₁ ⟹ G₂}
(Hτ : is_mon_nat_trans HG₁ HG₂ τ)
: is_mon_nat_trans
(comp_fmonoidal_lax HF HG₁)
(comp_fmonoidal_lax HF HG₂)
(pre_whisker F τ).
Show proof.
Proposition is_mon_nat_trans_postwhisker
{C₁ C₂ C₃ : category}
{M₁ : monoidal C₁}
{M₂ : monoidal C₂}
{M₃ : monoidal C₃}
{F₁ F₂ : C₁ ⟶ C₂}
{HF₁ : fmonoidal_lax M₁ M₂ F₁}
{HF₂ : fmonoidal_lax M₁ M₂ F₂}
{τ : F₁ ⟹ F₂}
(Hτ : is_mon_nat_trans HF₁ HF₂ τ)
{G : C₂ ⟶ C₃}
(HG : fmonoidal_lax M₂ M₃ G)
: is_mon_nat_trans
(comp_fmonoidal_lax HF₁ HG)
(comp_fmonoidal_lax HF₂ HG)
(post_whisker τ G).
Show proof.
Context {C D : category}
{M : monoidal C} {N : monoidal D}
{F G : functor C D}
(Fm : fmonoidal_lax M N F) (Gm : fmonoidal_lax M N G)
(α : F ⟹ G).
Definition is_mon_nat_trans_tensorlaw
: UU
:= ∏ (a a' : C),
fmonoidal_preservestensordata Fm a a' · α (a ⊗_{M} a')
=
α a ⊗^{N} α a' · fmonoidal_preservestensordata Gm a a'.
Definition is_mon_nat_trans_unitlaw : UU
:= fmonoidal_preservesunit Fm · α I_{M} = fmonoidal_preservesunit Gm.
Definition is_mon_nat_trans : UU := is_mon_nat_trans_tensorlaw × is_mon_nat_trans_unitlaw.
Lemma isaprop_is_mon_nat_trans : isaprop is_mon_nat_trans.
Show proof.
End MonoidalNaturalTransformations.
Section SomeMonoidalNaturalTransformations.
Lemma is_mon_nat_trans_identity {C D : category}
{M : monoidal C} {N : monoidal D}
{F : functor C D}
(Fm : fmonoidal_lax M N F) :
is_mon_nat_trans Fm Fm (nat_trans_id _).
Show proof.
split; red; cbn; unfold fmonoidal_preservestensordata, fmonoidal_preservesunit; intros.
- etrans.
2: { apply cancel_postcomposition.
apply pathsinv0, bifunctor_distributes_over_id.
- cbn in *.
apply (bifunctor_leftid N).
- cbn in *.
apply (bifunctor_rightid N).
}
rewrite id_left.
apply id_right.
- apply id_right.
- etrans.
2: { apply cancel_postcomposition.
apply pathsinv0, bifunctor_distributes_over_id.
- cbn in *.
apply (bifunctor_leftid N).
- cbn in *.
apply (bifunctor_rightid N).
}
rewrite id_left.
apply id_right.
- apply id_right.
Lemma is_mon_nat_trans_comp {C D : category}
{M : monoidal C} {N : monoidal D}
{F G H : functor C D}
(Fm : fmonoidal_lax M N F)
(Gm : fmonoidal_lax M N G)
(Hm : fmonoidal_lax M N H)
(α : F ⟹ G) (β : G ⟹ H)
:
is_mon_nat_trans Fm Gm α -> is_mon_nat_trans Gm Hm β ->
is_mon_nat_trans Fm Hm (nat_trans_comp _ _ _ α β).
Show proof.
intros Hα Hβ.
split; red; cbn; unfold fmonoidal_preservestensordata, fmonoidal_preservesunit; intros.
- etrans.
2: { apply cancel_postcomposition.
apply pathsinv0, bifunctor_distributes_over_comp.
- cbn in *.
apply (bifunctor_leftcomp N).
- cbn in *.
apply (bifunctor_rightcomp N).
- cbn in *.
apply (bifunctor_equalwhiskers N).
}
rewrite assoc.
etrans.
{ apply cancel_postcomposition.
apply (pr1 Hα a a'). }
repeat rewrite assoc'.
apply maponpaths.
apply (pr1 Hβ).
- rewrite assoc.
etrans.
{ apply cancel_postcomposition.
apply (pr2 Hα). }
apply (pr2 Hβ).
split; red; cbn; unfold fmonoidal_preservestensordata, fmonoidal_preservesunit; intros.
- etrans.
2: { apply cancel_postcomposition.
apply pathsinv0, bifunctor_distributes_over_comp.
- cbn in *.
apply (bifunctor_leftcomp N).
- cbn in *.
apply (bifunctor_rightcomp N).
- cbn in *.
apply (bifunctor_equalwhiskers N).
}
rewrite assoc.
etrans.
{ apply cancel_postcomposition.
apply (pr1 Hα a a'). }
repeat rewrite assoc'.
apply maponpaths.
apply (pr1 Hβ).
- rewrite assoc.
etrans.
{ apply cancel_postcomposition.
apply (pr2 Hα). }
apply (pr2 Hβ).
End SomeMonoidalNaturalTransformations.
Proposition is_mon_nat_trans_prewhisker
{C₁ C₂ C₃ : category}
{M₁ : monoidal C₁}
{M₂ : monoidal C₂}
{M₃ : monoidal C₃}
{F : C₁ ⟶ C₂}
(HF : fmonoidal_lax M₁ M₂ F)
{G₁ G₂ : C₂ ⟶ C₃}
{HG₁ : fmonoidal_lax M₂ M₃ G₁}
{HG₂ : fmonoidal_lax M₂ M₃ G₂}
{τ : G₁ ⟹ G₂}
(Hτ : is_mon_nat_trans HG₁ HG₂ τ)
: is_mon_nat_trans
(comp_fmonoidal_lax HF HG₁)
(comp_fmonoidal_lax HF HG₂)
(pre_whisker F τ).
Show proof.
split.
- intros x y ; cbn.
unfold fmonoidal_preservestensordata.
assert (aux := pr1 Hτ (F x) (F y)).
unfold fmonoidal_preservestensordata in aux.
etrans.
2: { rewrite assoc.
apply cancel_postcomposition.
exact aux. }
clear aux.
repeat rewrite assoc'.
apply maponpaths.
apply nat_trans_ax.
- unfold is_mon_nat_trans_unitlaw ; cbn.
unfold fmonoidal_preservesunit.
assert (aux := pr2 Hτ).
red in aux.
unfold fmonoidal_preservesunit in aux.
rewrite <- aux.
repeat rewrite assoc'.
apply maponpaths.
apply nat_trans_ax.
- intros x y ; cbn.
unfold fmonoidal_preservestensordata.
assert (aux := pr1 Hτ (F x) (F y)).
unfold fmonoidal_preservestensordata in aux.
etrans.
2: { rewrite assoc.
apply cancel_postcomposition.
exact aux. }
clear aux.
repeat rewrite assoc'.
apply maponpaths.
apply nat_trans_ax.
- unfold is_mon_nat_trans_unitlaw ; cbn.
unfold fmonoidal_preservesunit.
assert (aux := pr2 Hτ).
red in aux.
unfold fmonoidal_preservesunit in aux.
rewrite <- aux.
repeat rewrite assoc'.
apply maponpaths.
apply nat_trans_ax.
Proposition is_mon_nat_trans_postwhisker
{C₁ C₂ C₃ : category}
{M₁ : monoidal C₁}
{M₂ : monoidal C₂}
{M₃ : monoidal C₃}
{F₁ F₂ : C₁ ⟶ C₂}
{HF₁ : fmonoidal_lax M₁ M₂ F₁}
{HF₂ : fmonoidal_lax M₁ M₂ F₂}
{τ : F₁ ⟹ F₂}
(Hτ : is_mon_nat_trans HF₁ HF₂ τ)
{G : C₂ ⟶ C₃}
(HG : fmonoidal_lax M₂ M₃ G)
: is_mon_nat_trans
(comp_fmonoidal_lax HF₁ HG)
(comp_fmonoidal_lax HF₂ HG)
(post_whisker τ G).
Show proof.
split.
- intros x y ; cbn.
unfold fmonoidal_preservestensordata.
etrans.
{ rewrite assoc'.
apply maponpaths.
apply pathsinv0, functor_comp. }
etrans.
{ do 2 apply maponpaths.
apply (pr1 Hτ).
}
unfold fmonoidal_preservestensordata.
rewrite functor_comp.
repeat rewrite assoc.
apply cancel_postcomposition.
apply pathsinv0, preservestensor_is_nattrans_full.
+ apply (fmonoidal_preservestensornatleft HG).
+ apply (fmonoidal_preservestensornatright HG).
- unfold is_mon_nat_trans_unitlaw ; cbn.
unfold fmonoidal_preservesunit.
rewrite assoc'.
apply maponpaths.
etrans.
{ apply pathsinv0, functor_comp. }
apply maponpaths.
apply (pr2 Hτ).
- intros x y ; cbn.
unfold fmonoidal_preservestensordata.
etrans.
{ rewrite assoc'.
apply maponpaths.
apply pathsinv0, functor_comp. }
etrans.
{ do 2 apply maponpaths.
apply (pr1 Hτ).
}
unfold fmonoidal_preservestensordata.
rewrite functor_comp.
repeat rewrite assoc.
apply cancel_postcomposition.
apply pathsinv0, preservestensor_is_nattrans_full.
+ apply (fmonoidal_preservestensornatleft HG).
+ apply (fmonoidal_preservestensornatright HG).
- unfold is_mon_nat_trans_unitlaw ; cbn.
unfold fmonoidal_preservesunit.
rewrite assoc'.
apply maponpaths.
etrans.
{ apply pathsinv0, functor_comp. }
apply maponpaths.
apply (pr2 Hτ).
8. Inverses of monoidal natural transformations
Section InverseMonoidalNaturalTransformation.
Context {C D : category}
{M : monoidal C} {N : monoidal D}
{F G : functor C D}
(Fm : fmonoidal_lax M N F) (Gm : fmonoidal_lax M N G)
(α : F ⟹ G).
Lemma is_mon_nat_trans_pointwise_inverse
(isnziα : is_nat_z_iso α)
: is_mon_nat_trans Fm Gm α
->
is_mon_nat_trans Gm Fm (nat_z_iso_inv (α,,isnziα)).
Show proof.
Local Open Scope moncat.
Context {C D : category}
{M : monoidal C} {N : monoidal D}
{F G : functor C D}
(Fm : fmonoidal_lax M N F) (Gm : fmonoidal_lax M N G)
(α : F ⟹ G).
Lemma is_mon_nat_trans_pointwise_inverse
(isnziα : is_nat_z_iso α)
: is_mon_nat_trans Fm Gm α
->
is_mon_nat_trans Gm Fm (nat_z_iso_inv (α,,isnziα)).
Show proof.
intro ismnt. split.
- intros x y.
cbn.
unfold fmonoidal_preservestensordata.
set (aux := (_,, is_z_iso_bifunctor_z_iso N _ _ (isnziα x) (isnziα y)) : z_iso _ _).
apply pathsinv0, (z_iso_inv_on_right _ _ _ aux).
rewrite assoc.
apply (z_iso_inv_on_left _ _ _ _ (_,,isnziα (x ⊗_{ M} y))).
cbn.
apply (!(pr1 ismnt x y)).
- cbn.
apply pathsinv0, (z_iso_inv_on_left _ _ _ _ (_,,isnziα I_{M})).
apply (!(pr2 ismnt)).
End InverseMonoidalNaturalTransformation.- intros x y.
cbn.
unfold fmonoidal_preservestensordata.
set (aux := (_,, is_z_iso_bifunctor_z_iso N _ _ (isnziα x) (isnziα y)) : z_iso _ _).
apply pathsinv0, (z_iso_inv_on_right _ _ _ aux).
rewrite assoc.
apply (z_iso_inv_on_left _ _ _ _ (_,,isnziα (x ⊗_{ M} y))).
cbn.
apply (!(pr1 ismnt x y)).
- cbn.
apply pathsinv0, (z_iso_inv_on_left _ _ _ _ (_,,isnziα I_{M})).
apply (!(pr2 ismnt)).
Local Open Scope moncat.
9. Bundled versions
Definition lax_monoidal_functor
(V₁ V₂ : monoidal_cat)
: UU
:= ∑ (F : V₁ ⟶ V₂), fmonoidal_lax V₁ V₂ F.
#[reversible] Coercion lax_monoidal_functor_to_functor
{V₁ V₂ : monoidal_cat}
(F : lax_monoidal_functor V₁ V₂)
: V₁ ⟶ V₂
:= pr1 F.
#[reversible] Coercion lax_monoidal_functor_to_fmonoidal_lax
{V₁ V₂ : monoidal_cat}
(F : lax_monoidal_functor V₁ V₂)
: fmonoidal_lax V₁ V₂ F
:= pr2 F.
Definition symmetric_lax_monoidal_functor
(V₁ V₂ : sym_monoidal_cat)
: UU
:= ∑ (F : lax_monoidal_functor V₁ V₂),
is_symmetric_monoidal_functor (pr2 V₁) (pr2 V₂) (pr2 F).
#[reversible] Coercion symmetric_lax_monoidal_functor_to_lax_monoidal
{V₁ V₂ : sym_monoidal_cat}
(F : symmetric_lax_monoidal_functor V₁ V₂)
: lax_monoidal_functor V₁ V₂
:= pr1 F.
Definition strong_monoidal_functor
(V₁ V₂ : monoidal_cat)
: UU
:= ∑ (F : V₁ ⟶ V₂), fmonoidal V₁ V₂ F.
#[reversible] Coercion strong_monoidal_functor_to_lax_monoidal_functor
{V₁ V₂ : monoidal_cat}
(F : strong_monoidal_functor V₁ V₂)
: lax_monoidal_functor V₁ V₂
:= pr1 F ,, pr12 F.
Definition symmetric_strong_monoidal_functor
(V₁ V₂ : sym_monoidal_cat)
: UU
:= ∑ (F : strong_monoidal_functor V₁ V₂),
is_symmetric_monoidal_functor (pr2 V₁) (pr2 V₂) (pr2 F).
#[reversible] Coercion symmetric_strong_monoidal_functor_to_strong_monoidal
{V₁ V₂ : sym_monoidal_cat}
(F : symmetric_strong_monoidal_functor V₁ V₂)
: strong_monoidal_functor V₁ V₂
:= pr1 F.
#[reversible] Coercion symmetric_strong_monoidal_functor_to_lax_symmetric
{V₁ V₂ : sym_monoidal_cat}
(F : symmetric_strong_monoidal_functor V₁ V₂)
: symmetric_lax_monoidal_functor V₁ V₂
:= (pr11 F ,, pr121 F) ,, pr2 F.
Definition mon_functor_unit
{V₁ V₂ : monoidal_cat}
(F : lax_monoidal_functor V₁ V₂)
: I_{V₂} --> F (I_{V₁})
:= pr212 F.
Definition mon_functor_tensor
{V₁ V₂ : monoidal_cat}
(F : lax_monoidal_functor V₁ V₂)
(x y : V₁)
: F x ⊗ F y --> F(x ⊗ y)
:= pr112 F x y.
Section MonoidalFunctorAccessors.
Context {V₁ V₂ : monoidal_cat}
(F : lax_monoidal_functor V₁ V₂).
Definition tensor_mon_functor_tensor
{x₁ x₂ y₁ y₂ : V₁}
(f : x₁ --> x₂)
(g : y₁ --> y₂)
: #F f #⊗ #F g · mon_functor_tensor F x₂ y₂
=
mon_functor_tensor F x₁ y₁ · #F (f #⊗ g).
Show proof.
Definition mon_functor_lassociator
(x y z : V₁)
: mon_functor_tensor F x y #⊗ identity (F z)
· mon_functor_tensor F (x ⊗ y) z
· #F (mon_lassociator x y z)
=
mon_lassociator (F x) (F y) (F z)
· identity (F x) #⊗ mon_functor_tensor F y z
· mon_functor_tensor F x (y ⊗ z).
Show proof.
Definition mon_functor_rassociator
(x y z : V₁)
: mon_rassociator (F x) (F y) (F z)
· mon_functor_tensor F x y #⊗ identity (F z)
· mon_functor_tensor F (x ⊗ y) z
=
identity (F x) #⊗ mon_functor_tensor F y z
· mon_functor_tensor F x (y ⊗ z)
· #F (mon_rassociator x y z).
Show proof.
Definition mon_functor_lunitor
(x : V₁)
: mon_lunitor (F x)
=
mon_functor_unit F #⊗ identity (F x)
· mon_functor_tensor F (I_{V₁}) x
· #F (mon_lunitor x).
Show proof.
Definition mon_functor_linvunitor
(x : V₁)
: #F (mon_linvunitor x)
=
mon_linvunitor (F x)
· mon_functor_unit F #⊗ identity (F x)
· mon_functor_tensor F (I_{V₁}) x.
Show proof.
Definition mon_functor_runitor
(x : V₁)
: mon_runitor (F x)
=
identity (F x) #⊗ mon_functor_unit F
· mon_functor_tensor F x (I_{V₁})
· #F (mon_runitor x).
Show proof.
Definition mon_functor_rinvunitor
(x : V₁)
: #F (mon_rinvunitor x)
=
mon_rinvunitor (F x)
· identity (F x) #⊗ mon_functor_unit F
· mon_functor_tensor F x (I_{V₁}).
Show proof.
Section StrongMonoidalFunctorAccessors.
Context {V₁ V₂ : monoidal_cat}
(F : strong_monoidal_functor V₁ V₂).
Definition strong_functor_unit_inv
: F (I_{V₁}) --> I_{V₂}.
Show proof.
Definition strong_functor_unit_inv_unit
: strong_functor_unit_inv · mon_functor_unit F = identity _.
Show proof.
Definition strong_functor_unit_unit_inv
: mon_functor_unit F · strong_functor_unit_inv = identity _.
Show proof.
Definition strong_functor_tensor_inv
(x y : V₁)
: F(x ⊗ y) --> F x ⊗ F y.
Show proof.
Definition strong_functor_tensor_inv_tensor
(x y : V₁)
: strong_functor_tensor_inv x y · mon_functor_tensor F x y = identity _.
Show proof.
Definition strong_functor_tensor_tensor_inv
(x y : V₁)
: mon_functor_tensor F x y · strong_functor_tensor_inv x y = identity _.
Show proof.
Definition tensor_strong_functor_tensor_inv
{x₁ x₂ y₁ y₂ : V₁}
(f : x₁ --> x₂)
(g : y₁ --> y₂)
: strong_functor_tensor_inv x₁ y₁ · #F f #⊗ #F g
=
#F (f #⊗ g) · strong_functor_tensor_inv x₂ y₂.
Show proof.
Proposition symmetric_lax_monoidal_sym_mon_braiding
{V₁ V₂ : sym_monoidal_cat}
(F : symmetric_lax_monoidal_functor V₁ V₂)
(x y : V₁)
: sym_mon_braiding V₂ (F x) (F y) · mon_functor_tensor F y x
=
mon_functor_tensor F x y · #F (sym_mon_braiding V₁ x y).
Show proof.
(V₁ V₂ : monoidal_cat)
: UU
:= ∑ (F : V₁ ⟶ V₂), fmonoidal_lax V₁ V₂ F.
#[reversible] Coercion lax_monoidal_functor_to_functor
{V₁ V₂ : monoidal_cat}
(F : lax_monoidal_functor V₁ V₂)
: V₁ ⟶ V₂
:= pr1 F.
#[reversible] Coercion lax_monoidal_functor_to_fmonoidal_lax
{V₁ V₂ : monoidal_cat}
(F : lax_monoidal_functor V₁ V₂)
: fmonoidal_lax V₁ V₂ F
:= pr2 F.
Definition symmetric_lax_monoidal_functor
(V₁ V₂ : sym_monoidal_cat)
: UU
:= ∑ (F : lax_monoidal_functor V₁ V₂),
is_symmetric_monoidal_functor (pr2 V₁) (pr2 V₂) (pr2 F).
#[reversible] Coercion symmetric_lax_monoidal_functor_to_lax_monoidal
{V₁ V₂ : sym_monoidal_cat}
(F : symmetric_lax_monoidal_functor V₁ V₂)
: lax_monoidal_functor V₁ V₂
:= pr1 F.
Definition strong_monoidal_functor
(V₁ V₂ : monoidal_cat)
: UU
:= ∑ (F : V₁ ⟶ V₂), fmonoidal V₁ V₂ F.
#[reversible] Coercion strong_monoidal_functor_to_lax_monoidal_functor
{V₁ V₂ : monoidal_cat}
(F : strong_monoidal_functor V₁ V₂)
: lax_monoidal_functor V₁ V₂
:= pr1 F ,, pr12 F.
Definition symmetric_strong_monoidal_functor
(V₁ V₂ : sym_monoidal_cat)
: UU
:= ∑ (F : strong_monoidal_functor V₁ V₂),
is_symmetric_monoidal_functor (pr2 V₁) (pr2 V₂) (pr2 F).
#[reversible] Coercion symmetric_strong_monoidal_functor_to_strong_monoidal
{V₁ V₂ : sym_monoidal_cat}
(F : symmetric_strong_monoidal_functor V₁ V₂)
: strong_monoidal_functor V₁ V₂
:= pr1 F.
#[reversible] Coercion symmetric_strong_monoidal_functor_to_lax_symmetric
{V₁ V₂ : sym_monoidal_cat}
(F : symmetric_strong_monoidal_functor V₁ V₂)
: symmetric_lax_monoidal_functor V₁ V₂
:= (pr11 F ,, pr121 F) ,, pr2 F.
Definition mon_functor_unit
{V₁ V₂ : monoidal_cat}
(F : lax_monoidal_functor V₁ V₂)
: I_{V₂} --> F (I_{V₁})
:= pr212 F.
Definition mon_functor_tensor
{V₁ V₂ : monoidal_cat}
(F : lax_monoidal_functor V₁ V₂)
(x y : V₁)
: F x ⊗ F y --> F(x ⊗ y)
:= pr112 F x y.
Section MonoidalFunctorAccessors.
Context {V₁ V₂ : monoidal_cat}
(F : lax_monoidal_functor V₁ V₂).
Definition tensor_mon_functor_tensor
{x₁ x₂ y₁ y₂ : V₁}
(f : x₁ --> x₂)
(g : y₁ --> y₂)
: #F f #⊗ #F g · mon_functor_tensor F x₂ y₂
=
mon_functor_tensor F x₁ y₁ · #F (f #⊗ g).
Show proof.
unfold monoidal_cat_tensor_mor.
unfold functoronmorphisms1.
rewrite !assoc'.
etrans.
{
apply maponpaths.
apply (fmonoidal_preservestensornatleft (pr2 F)).
}
rewrite !assoc.
etrans.
{
apply maponpaths_2.
apply (fmonoidal_preservestensornatright (pr2 F)).
}
rewrite !assoc'.
apply maponpaths.
rewrite <- functor_comp.
apply idpath.
unfold functoronmorphisms1.
rewrite !assoc'.
etrans.
{
apply maponpaths.
apply (fmonoidal_preservestensornatleft (pr2 F)).
}
rewrite !assoc.
etrans.
{
apply maponpaths_2.
apply (fmonoidal_preservestensornatright (pr2 F)).
}
rewrite !assoc'.
apply maponpaths.
rewrite <- functor_comp.
apply idpath.
Definition mon_functor_lassociator
(x y z : V₁)
: mon_functor_tensor F x y #⊗ identity (F z)
· mon_functor_tensor F (x ⊗ y) z
· #F (mon_lassociator x y z)
=
mon_lassociator (F x) (F y) (F z)
· identity (F x) #⊗ mon_functor_tensor F y z
· mon_functor_tensor F x (y ⊗ z).
Show proof.
refine (_ @ fmonoidal_preservesassociativity (pr2 F) x y z @ _).
- apply maponpaths_2.
apply maponpaths_2.
unfold monoidal_cat_tensor_mor.
unfold functoronmorphisms1.
refine (_ @ id_right _).
apply maponpaths.
apply (bifunctor_leftid V₂).
- apply maponpaths_2.
apply maponpaths.
unfold monoidal_cat_tensor_mor.
unfold functoronmorphisms1.
refine (!(id_left _) @ _).
apply maponpaths_2.
refine (!_).
apply (bifunctor_rightid V₂).
- apply maponpaths_2.
apply maponpaths_2.
unfold monoidal_cat_tensor_mor.
unfold functoronmorphisms1.
refine (_ @ id_right _).
apply maponpaths.
apply (bifunctor_leftid V₂).
- apply maponpaths_2.
apply maponpaths.
unfold monoidal_cat_tensor_mor.
unfold functoronmorphisms1.
refine (!(id_left _) @ _).
apply maponpaths_2.
refine (!_).
apply (bifunctor_rightid V₂).
Definition mon_functor_rassociator
(x y z : V₁)
: mon_rassociator (F x) (F y) (F z)
· mon_functor_tensor F x y #⊗ identity (F z)
· mon_functor_tensor F (x ⊗ y) z
=
identity (F x) #⊗ mon_functor_tensor F y z
· mon_functor_tensor F x (y ⊗ z)
· #F (mon_rassociator x y z).
Show proof.
refine (!_).
etrans.
{
apply maponpaths_2.
refine (!(id_left _) @ _).
etrans.
{
apply maponpaths_2.
refine (!_).
apply mon_rassociator_lassociator.
}
rewrite !assoc'.
apply maponpaths.
rewrite !assoc.
refine (!_).
apply mon_functor_lassociator.
}
rewrite !assoc'.
do 2 apply maponpaths.
refine (_ @ id_right _).
apply maponpaths.
refine (!(functor_comp _ _ _) @ _ @ functor_id _ _).
apply maponpaths.
apply mon_lassociator_rassociator.
etrans.
{
apply maponpaths_2.
refine (!(id_left _) @ _).
etrans.
{
apply maponpaths_2.
refine (!_).
apply mon_rassociator_lassociator.
}
rewrite !assoc'.
apply maponpaths.
rewrite !assoc.
refine (!_).
apply mon_functor_lassociator.
}
rewrite !assoc'.
do 2 apply maponpaths.
refine (_ @ id_right _).
apply maponpaths.
refine (!(functor_comp _ _ _) @ _ @ functor_id _ _).
apply maponpaths.
apply mon_lassociator_rassociator.
Definition mon_functor_lunitor
(x : V₁)
: mon_lunitor (F x)
=
mon_functor_unit F #⊗ identity (F x)
· mon_functor_tensor F (I_{V₁}) x
· #F (mon_lunitor x).
Show proof.
refine (!(fmonoidal_preservesleftunitality (pr2 F) x) @ _).
do 2 apply maponpaths_2.
unfold monoidal_cat_tensor_mor.
unfold functoronmorphisms1.
refine (!(id_right _) @ _).
apply maponpaths.
refine (!_).
apply (bifunctor_leftid V₂).
do 2 apply maponpaths_2.
unfold monoidal_cat_tensor_mor.
unfold functoronmorphisms1.
refine (!(id_right _) @ _).
apply maponpaths.
refine (!_).
apply (bifunctor_leftid V₂).
Definition mon_functor_linvunitor
(x : V₁)
: #F (mon_linvunitor x)
=
mon_linvunitor (F x)
· mon_functor_unit F #⊗ identity (F x)
· mon_functor_tensor F (I_{V₁}) x.
Show proof.
refine (!(id_left _) @ _).
etrans.
{
apply maponpaths_2.
refine (!_).
apply mon_linvunitor_lunitor.
}
rewrite !assoc'.
apply maponpaths.
etrans.
{
apply maponpaths_2.
apply mon_functor_lunitor.
}
rewrite !assoc'.
apply maponpaths.
refine (_ @ id_right _).
apply maponpaths.
refine (!(functor_comp _ _ _) @ _ @ functor_id _ _).
apply maponpaths.
apply mon_lunitor_linvunitor.
etrans.
{
apply maponpaths_2.
refine (!_).
apply mon_linvunitor_lunitor.
}
rewrite !assoc'.
apply maponpaths.
etrans.
{
apply maponpaths_2.
apply mon_functor_lunitor.
}
rewrite !assoc'.
apply maponpaths.
refine (_ @ id_right _).
apply maponpaths.
refine (!(functor_comp _ _ _) @ _ @ functor_id _ _).
apply maponpaths.
apply mon_lunitor_linvunitor.
Definition mon_functor_runitor
(x : V₁)
: mon_runitor (F x)
=
identity (F x) #⊗ mon_functor_unit F
· mon_functor_tensor F x (I_{V₁})
· #F (mon_runitor x).
Show proof.
refine (!(fmonoidal_preservesrightunitality (pr2 F) x) @ _).
do 2 apply maponpaths_2.
unfold monoidal_cat_tensor_mor.
unfold functoronmorphisms1.
refine (!(id_left _) @ _).
apply maponpaths_2.
refine (!_).
apply (bifunctor_rightid V₂).
do 2 apply maponpaths_2.
unfold monoidal_cat_tensor_mor.
unfold functoronmorphisms1.
refine (!(id_left _) @ _).
apply maponpaths_2.
refine (!_).
apply (bifunctor_rightid V₂).
Definition mon_functor_rinvunitor
(x : V₁)
: #F (mon_rinvunitor x)
=
mon_rinvunitor (F x)
· identity (F x) #⊗ mon_functor_unit F
· mon_functor_tensor F x (I_{V₁}).
Show proof.
refine (!(id_left _) @ _).
etrans.
{
apply maponpaths_2.
refine (!_).
apply mon_rinvunitor_runitor.
}
rewrite !assoc'.
apply maponpaths.
etrans.
{
apply maponpaths_2.
apply mon_functor_runitor.
}
rewrite !assoc'.
apply maponpaths.
refine (_ @ id_right _).
apply maponpaths.
refine (!(functor_comp _ _ _) @ _ @ functor_id _ _).
apply maponpaths.
apply mon_runitor_rinvunitor.
End MonoidalFunctorAccessors.etrans.
{
apply maponpaths_2.
refine (!_).
apply mon_rinvunitor_runitor.
}
rewrite !assoc'.
apply maponpaths.
etrans.
{
apply maponpaths_2.
apply mon_functor_runitor.
}
rewrite !assoc'.
apply maponpaths.
refine (_ @ id_right _).
apply maponpaths.
refine (!(functor_comp _ _ _) @ _ @ functor_id _ _).
apply maponpaths.
apply mon_runitor_rinvunitor.
Section StrongMonoidalFunctorAccessors.
Context {V₁ V₂ : monoidal_cat}
(F : strong_monoidal_functor V₁ V₂).
Definition strong_functor_unit_inv
: F (I_{V₁}) --> I_{V₂}.
Show proof.
Definition strong_functor_unit_inv_unit
: strong_functor_unit_inv · mon_functor_unit F = identity _.
Show proof.
Definition strong_functor_unit_unit_inv
: mon_functor_unit F · strong_functor_unit_inv = identity _.
Show proof.
Definition strong_functor_tensor_inv
(x y : V₁)
: F(x ⊗ y) --> F x ⊗ F y.
Show proof.
Definition strong_functor_tensor_inv_tensor
(x y : V₁)
: strong_functor_tensor_inv x y · mon_functor_tensor F x y = identity _.
Show proof.
Definition strong_functor_tensor_tensor_inv
(x y : V₁)
: mon_functor_tensor F x y · strong_functor_tensor_inv x y = identity _.
Show proof.
Definition tensor_strong_functor_tensor_inv
{x₁ x₂ y₁ y₂ : V₁}
(f : x₁ --> x₂)
(g : y₁ --> y₂)
: strong_functor_tensor_inv x₁ y₁ · #F f #⊗ #F g
=
#F (f #⊗ g) · strong_functor_tensor_inv x₂ y₂.
Show proof.
use z_iso_inv_on_right ; cbn.
rewrite !assoc.
use z_iso_inv_on_left ; cbn.
refine (!_).
apply (tensor_mon_functor_tensor F).
End StrongMonoidalFunctorAccessors.rewrite !assoc.
use z_iso_inv_on_left ; cbn.
refine (!_).
apply (tensor_mon_functor_tensor F).
Proposition symmetric_lax_monoidal_sym_mon_braiding
{V₁ V₂ : sym_monoidal_cat}
(F : symmetric_lax_monoidal_functor V₁ V₂)
(x y : V₁)
: sym_mon_braiding V₂ (F x) (F y) · mon_functor_tensor F y x
=
mon_functor_tensor F x y · #F (sym_mon_braiding V₁ x y).
Show proof.
10. Builders for the bundled versions
Definition lax_monoidal_functor_laws
{V₁ V₂ : monoidal_cat}
(F : V₁ ⟶ V₂)
(μ : ∏ (x y : V₁), F x ⊗ F y --> F(x ⊗ y))
(η : I_{V₂} --> F(I_{V₁}))
: UU
:= (∏ (x₁ x₂ y₁ y₂ : V₁)
(f : x₁ --> x₂)
(g : y₁ --> y₂),
#F f #⊗ #F g · μ x₂ y₂
=
μ x₁ y₁ · #F(f #⊗ g))
×
(∏ (x : V₁),
η #⊗ identity _ · μ (I_{V₁}) x · #F (mon_lunitor x)
=
mon_lunitor (F x))
×
(∏ (x : V₁),
identity _ #⊗ η · μ x (I_{V₁}) · #F (mon_runitor x)
=
mon_runitor (F x))
×
(∏ (x y z : V₁),
(μ x y #⊗ identity _) · μ (x ⊗ y) z · #F(mon_lassociator x y z)
=
mon_lassociator (F x) (F y) (F z) · (identity _ #⊗ μ y z) · μ x (y ⊗ z)).
Proposition lax_monoidal_functor_laws_to_monoidal_laws
{V₁ V₂ : monoidal_cat}
{F : V₁ ⟶ V₂}
{μ : ∏ (x y : V₁), F x ⊗ F y --> F(x ⊗ y)}
{η : I_{V₂} --> F(I_{V₁})}
(HF : lax_monoidal_functor_laws F μ η)
: fmonoidal_laxlaws (μ,, η).
Show proof.
Definition make_lax_monoidal_functor
{V₁ V₂ : monoidal_cat}
(F : V₁ ⟶ V₂)
(μ : ∏ (x y : V₁), F x ⊗ F y --> F(x ⊗ y))
(η : I_{V₂} --> F(I_{V₁}))
(HF : lax_monoidal_functor_laws F μ η)
: lax_monoidal_functor V₁ V₂
:= F ,, (μ ,, η) ,, lax_monoidal_functor_laws_to_monoidal_laws HF.
Definition make_strong_monoidal_functor
{V₁ V₂ : monoidal_cat}
(F : lax_monoidal_functor V₁ V₂)
(Hμ : ∏ (x y : V₁), is_z_isomorphism (mon_functor_tensor F x y))
(Hη : is_z_isomorphism (mon_functor_unit F))
: strong_monoidal_functor V₁ V₂
:= pr1 F ,, pr2 F ,, Hμ ,, Hη.
Definition symmetric_monoidal_functor_laws
{V₁ V₂ : sym_monoidal_cat}
(F : lax_monoidal_functor V₁ V₂)
: UU
:= ∏ (x y : V₁),
sym_mon_braiding V₂ (F x) (F y) · mon_functor_tensor F y x
=
mon_functor_tensor F x y · #F(sym_mon_braiding V₁ x y).
Definition make_symmetric_lax_monoidal_functor
{V₁ V₂ : sym_monoidal_cat}
(F : lax_monoidal_functor V₁ V₂)
(HF : symmetric_monoidal_functor_laws F)
: symmetric_lax_monoidal_functor V₁ V₂
:= F ,, HF.
Definition make_symmetric_strong_monoidal_functor
{V₁ V₂ : sym_monoidal_cat}
(F : strong_monoidal_functor V₁ V₂)
(HF : symmetric_monoidal_functor_laws F)
: symmetric_strong_monoidal_functor V₁ V₂
:= F ,, HF.
{V₁ V₂ : monoidal_cat}
(F : V₁ ⟶ V₂)
(μ : ∏ (x y : V₁), F x ⊗ F y --> F(x ⊗ y))
(η : I_{V₂} --> F(I_{V₁}))
: UU
:= (∏ (x₁ x₂ y₁ y₂ : V₁)
(f : x₁ --> x₂)
(g : y₁ --> y₂),
#F f #⊗ #F g · μ x₂ y₂
=
μ x₁ y₁ · #F(f #⊗ g))
×
(∏ (x : V₁),
η #⊗ identity _ · μ (I_{V₁}) x · #F (mon_lunitor x)
=
mon_lunitor (F x))
×
(∏ (x : V₁),
identity _ #⊗ η · μ x (I_{V₁}) · #F (mon_runitor x)
=
mon_runitor (F x))
×
(∏ (x y z : V₁),
(μ x y #⊗ identity _) · μ (x ⊗ y) z · #F(mon_lassociator x y z)
=
mon_lassociator (F x) (F y) (F z) · (identity _ #⊗ μ y z) · μ x (y ⊗ z)).
Proposition lax_monoidal_functor_laws_to_monoidal_laws
{V₁ V₂ : monoidal_cat}
{F : V₁ ⟶ V₂}
{μ : ∏ (x y : V₁), F x ⊗ F y --> F(x ⊗ y)}
{η : I_{V₂} --> F(I_{V₁})}
(HF : lax_monoidal_functor_laws F μ η)
: fmonoidal_laxlaws (μ,, η).
Show proof.
repeat split.
- intros x y₁ y₂ g ; cbn.
refine (_ @ pr1 HF _ _ _ _ (identity _) g @ _).
+ apply maponpaths_2.
unfold monoidal_cat_tensor_mor, functoronmorphisms1.
refine (!(id_left _) @ _).
apply maponpaths_2.
rewrite functor_id.
refine (!_).
apply (bifunctor_rightid (pr2 V₂)).
+ do 2 apply maponpaths.
unfold monoidal_cat_tensor_mor, functoronmorphisms1.
refine (_ @ id_left _).
apply maponpaths_2.
apply (bifunctor_rightid (pr2 V₁)).
- intros x₁ x₂ y f ; cbn.
refine (_ @ pr1 HF _ _ _ _ f (identity _) @ _).
+ apply maponpaths_2.
unfold monoidal_cat_tensor_mor, functoronmorphisms1.
refine (!(id_right _) @ _).
apply maponpaths.
rewrite functor_id.
refine (!_).
apply (bifunctor_leftid (pr2 V₂)).
+ do 2 apply maponpaths.
unfold monoidal_cat_tensor_mor, functoronmorphisms1.
refine (_ @ id_right _).
apply maponpaths.
apply (bifunctor_leftid (pr2 V₁)).
- intros x y z ; cbn.
refine (_ @ pr222 HF x y z @ _).
+ do 2 apply maponpaths_2.
unfold monoidal_cat_tensor_mor, functoronmorphisms1.
refine (!(id_right _) @ _).
apply maponpaths.
refine (!_).
apply (bifunctor_leftid (pr2 V₂)).
+ apply maponpaths_2.
apply maponpaths.
unfold monoidal_cat_tensor_mor, functoronmorphisms1.
refine (_ @ id_left _).
apply maponpaths_2.
apply (bifunctor_rightid (pr2 V₂)).
- intros x ; cbn.
refine (_ @ pr12 HF x).
do 2 apply maponpaths_2.
unfold monoidal_cat_tensor_mor, functoronmorphisms1.
refine (!(id_right _) @ _).
apply maponpaths.
refine (!_).
apply (bifunctor_leftid (pr2 V₂)).
- intros x ; cbn.
refine (_ @ pr122 HF x).
do 2 apply maponpaths_2.
unfold monoidal_cat_tensor_mor, functoronmorphisms1.
refine (!(id_left _) @ _).
apply maponpaths_2.
refine (!_).
apply (bifunctor_rightid (pr2 V₂)).
- intros x y₁ y₂ g ; cbn.
refine (_ @ pr1 HF _ _ _ _ (identity _) g @ _).
+ apply maponpaths_2.
unfold monoidal_cat_tensor_mor, functoronmorphisms1.
refine (!(id_left _) @ _).
apply maponpaths_2.
rewrite functor_id.
refine (!_).
apply (bifunctor_rightid (pr2 V₂)).
+ do 2 apply maponpaths.
unfold monoidal_cat_tensor_mor, functoronmorphisms1.
refine (_ @ id_left _).
apply maponpaths_2.
apply (bifunctor_rightid (pr2 V₁)).
- intros x₁ x₂ y f ; cbn.
refine (_ @ pr1 HF _ _ _ _ f (identity _) @ _).
+ apply maponpaths_2.
unfold monoidal_cat_tensor_mor, functoronmorphisms1.
refine (!(id_right _) @ _).
apply maponpaths.
rewrite functor_id.
refine (!_).
apply (bifunctor_leftid (pr2 V₂)).
+ do 2 apply maponpaths.
unfold monoidal_cat_tensor_mor, functoronmorphisms1.
refine (_ @ id_right _).
apply maponpaths.
apply (bifunctor_leftid (pr2 V₁)).
- intros x y z ; cbn.
refine (_ @ pr222 HF x y z @ _).
+ do 2 apply maponpaths_2.
unfold monoidal_cat_tensor_mor, functoronmorphisms1.
refine (!(id_right _) @ _).
apply maponpaths.
refine (!_).
apply (bifunctor_leftid (pr2 V₂)).
+ apply maponpaths_2.
apply maponpaths.
unfold monoidal_cat_tensor_mor, functoronmorphisms1.
refine (_ @ id_left _).
apply maponpaths_2.
apply (bifunctor_rightid (pr2 V₂)).
- intros x ; cbn.
refine (_ @ pr12 HF x).
do 2 apply maponpaths_2.
unfold monoidal_cat_tensor_mor, functoronmorphisms1.
refine (!(id_right _) @ _).
apply maponpaths.
refine (!_).
apply (bifunctor_leftid (pr2 V₂)).
- intros x ; cbn.
refine (_ @ pr122 HF x).
do 2 apply maponpaths_2.
unfold monoidal_cat_tensor_mor, functoronmorphisms1.
refine (!(id_left _) @ _).
apply maponpaths_2.
refine (!_).
apply (bifunctor_rightid (pr2 V₂)).
Definition make_lax_monoidal_functor
{V₁ V₂ : monoidal_cat}
(F : V₁ ⟶ V₂)
(μ : ∏ (x y : V₁), F x ⊗ F y --> F(x ⊗ y))
(η : I_{V₂} --> F(I_{V₁}))
(HF : lax_monoidal_functor_laws F μ η)
: lax_monoidal_functor V₁ V₂
:= F ,, (μ ,, η) ,, lax_monoidal_functor_laws_to_monoidal_laws HF.
Definition make_strong_monoidal_functor
{V₁ V₂ : monoidal_cat}
(F : lax_monoidal_functor V₁ V₂)
(Hμ : ∏ (x y : V₁), is_z_isomorphism (mon_functor_tensor F x y))
(Hη : is_z_isomorphism (mon_functor_unit F))
: strong_monoidal_functor V₁ V₂
:= pr1 F ,, pr2 F ,, Hμ ,, Hη.
Definition symmetric_monoidal_functor_laws
{V₁ V₂ : sym_monoidal_cat}
(F : lax_monoidal_functor V₁ V₂)
: UU
:= ∏ (x y : V₁),
sym_mon_braiding V₂ (F x) (F y) · mon_functor_tensor F y x
=
mon_functor_tensor F x y · #F(sym_mon_braiding V₁ x y).
Definition make_symmetric_lax_monoidal_functor
{V₁ V₂ : sym_monoidal_cat}
(F : lax_monoidal_functor V₁ V₂)
(HF : symmetric_monoidal_functor_laws F)
: symmetric_lax_monoidal_functor V₁ V₂
:= F ,, HF.
Definition make_symmetric_strong_monoidal_functor
{V₁ V₂ : sym_monoidal_cat}
(F : strong_monoidal_functor V₁ V₂)
(HF : symmetric_monoidal_functor_laws F)
: symmetric_strong_monoidal_functor V₁ V₂
:= F ,, HF.