Library UniMath.ModelCategories.Generated.GenericFreeMonoidSequence

Can be found on nlab: https://ncatlab.org/nlab/show/transfinite+construction+of+free+algebras Or in G. M. Kelly. A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves
We will end up requiring that C is cocomplete anyway
Context {C : category}.
Context (V : monoidal C).
Local Definition CMon : monoidal_cat := (_,, V).
Context (T : pointed V).

Context (CL : Chains C).
Context (CE : Coequalizers C).

the horizontal map can be constructed from the vertical map:
              TXβ
                |
                | xβ
                v
  Xβ --------> Xβ1
     τXβ · xβ
where τ is the unit of our pointed endofunctor (T, τ).
Local Definition pair_diagram : UU :=
     (x0 x1 : C), (T _{V} x0 --> x1).

Local Definition pair_diagram_lob (X : pair_diagram) : C :=
    pr1 X.
Local Definition pair_diagram_rob (X : pair_diagram) : C :=
    pr12 X.
#[reversible] Coercion pair_diagram_arr (X : pair_diagram) :=
    pr22 X.

Local Definition pair_diagram_horizontal_arrow (X : pair_diagram) : (pair_diagram_lob X) --> (pair_diagram_rob X).
Show proof.
  destruct X as [ [Xβ1 ]].
  setX := (luinv_{V} ) · (pointed_pt _ T) ⊗^{V}_{r} : --> T _{V} ).
  exactX · ).

Definition next_pair_diagram_coeq_arr0 ( : pair_diagram) :
    T _{V} (pair_diagram_lob ) -->
        T _{V} (pair_diagram_rob ).
Show proof.
  apply (compose (pair_diagram_arr )).
  exact ((luinv_{V} _) · (pointed_pt _ T) ⊗^{V}_{r} _).

Definition next_pair_diagram_coeq_arr1 ( : pair_diagram) :
    T _{V} (pair_diagram_lob ) -->
        T _{V} (pair_diagram_rob ).
Show proof.

Definition next_pair_diagram_coeq ( : pair_diagram) :=
    CE _ _ (next_pair_diagram_coeq_arr0 ) (next_pair_diagram_coeq_arr1 ).

Part of the sequence that we are considering:
  TXβ-1 --> TXβ ----> TXβ1
    |        |         |
    |     xβ |         | xβ1
    v        v         v
    Xβ ----> Xβ1 ----> Xβ2
        fβ
the next "left object" is Xβ1
Definition next_pair_diagram ( : pair_diagram) : pair_diagram.
Show proof.
  exists (pair_diagram_rob ).

  set (coeq := next_pair_diagram_coeq ).
  set (Xβ2 := CoequalizerObject _ coeq).
  exists Xβ2.

  set (xβ1 := CoequalizerArrow _ coeq).
  exact xβ1.

Definition free_monoid_coeq_sequence_on (A : C) :
    nat -> pair_diagram.
Show proof.
  intro n.
  induction n as [|β ].
  - exists A, (T _{V} A).
    exact (identity _).
  - exact (next_pair_diagram ).

Definition free_monoid_coeq_sequence_diagram_on (A : C) :
    chain C.
Show proof.
  set (seq := free_monoid_coeq_sequence_on A).
  use tpair.
  - intro n.
    exact (pair_diagram_lob (seq n)).
  - intros m n H.
    induction H.
    exact ((pair_diagram_horizontal_arrow (seq m))).

Definition rightwhisker_chain_with (P : CMon) (d : chain C) :
    chain C := mapchain (monoidal_right_tensor P) d.
Definition leftwhisker_chain_with (P : CMon) (d : chain C) :
    chain C := mapchain (monoidal_left_tensor P) d.

Definition free_monoid_coeq_sequence_colim_on (A : C) :
  ColimCocone (free_monoid_coeq_sequence_diagram_on A) :=
    CL _.

Local Definition free_monoid_coeq_sequence_colim_unit :=
    free_monoid_coeq_sequence_colim_on I_{V}.
Local Definition Tinf : pointed V.
Show proof.

Definition free_monoid_coeq_sequence_leftwhisker_colim_on (P A : C) :
    ColimCocone (leftwhisker_chain_with P (free_monoid_coeq_sequence_diagram_on A)) :=
        CL _.
Definition free_monoid_coeq_sequence_rightwhisker_colim_on (P A : C) :
    ColimCocone (rightwhisker_chain_with P (free_monoid_coeq_sequence_diagram_on A)) :=
        CL _.

Definition chain_shift_left (c : chain C) : chain C.
Show proof.
  use tpair.
  - intro n. exact (dob c (S n)).
  - intros m n e.
    use (dmor c).
    now rewrite <- e.

Definition chain_shift_left_base_cocone (c : chain C)
    (clmsh := colim (CL (chain_shift_left c))) :
  cocone c clmsh.
Show proof.
  use make_cocone.
  - intro v.
    exact ((dmor c (idpath _)) · (colimIn (CL (chain_shift_left c)) v)).
  - abstract (
      intros u v e;
      etrans; [|
        apply cancel_precomposition;
        exact (colimInCommutes (CL (chain_shift_left c)) _ _ e)
      ];
      etrans; [apply assoc|];
      apply pathsinv0;
      etrans; [apply assoc|];
      apply cancel_postcomposition;
      rewrite <- e;
      apply cancel_precomposition;
      apply (maponpaths (dmor c));
      apply isasetnat
    ).

Definition chain_shift_left_shl_cocone (c : chain C)
    (clm := colim (CL c)) :
  cocone (chain_shift_left c) clm.
Show proof.
  use make_cocone.
  - intro v.
    apply (colimIn (CL c)).
  - abstract (
      intros u v e;
      apply (colimInCommutes _ (S u : vertex nat_graph) (S v))
    ).

Definition chain_shift_left_fwd_cocone (c : chain C)
    {k : C} (cc : cocone c k) :
  cocone (chain_shift_left c) k.
Show proof.
  use make_cocone.
  - intro v.
    exact (coconeIn cc (S v)).
  - abstract (
      intros u v e;
      apply (coconeInCommutes cc _ _ _)
    ).

Definition chain_shift_left_inv_cocone (c : chain C)
    {k : C} (cc : cocone (chain_shift_left c) k) :
  cocone c k.
Show proof.
  use make_cocone.
  - intro v.
    induction v.
    * apply (postcompose (coconeIn cc 0)).
      use (dmor c).
      reflexivity.
    * exact (coconeIn cc v).
  - abstract (
      intros u v e;
      induction u; [now rewrite <- e|];
      rewrite <- e;
      
      apply pathsinv0;
      etrans; [apply (pathsinv0 (coconeInCommutes cc _ _ (idpath (S u))))|];
      apply cancel_postcomposition;
      apply (maponpaths (dmor c));
      apply isasetnat
    ).

Definition chain_shift_left_base_isColimCocone (c : chain C) :
    isColimCocone _ _ (chain_shift_left_base_cocone c).
Show proof.
  set (clmsh := CL (chain_shift_left c)).
  intros cl cc.
  set (fwd_cocone := chain_shift_left_fwd_cocone _ cc).
  set (fwd_univProp := colimUnivProp clmsh cl fwd_cocone).
  destruct fwd_univProp as [mor uniqueness].
  use unique_exists.
  - exact (pr1 mor).
  - abstract (
      intro v;
      etrans; [apply assoc'|];
      etrans; [apply cancel_precomposition;
              exact (pr2 mor v)|];
      apply (coconeInCommutes cc)
    ).
  - abstract (
      intro; apply impred; intro; apply homset_property
    ).
  - abstract (
      intros y ccy;
      
      apply pathsinv0;
      etrans; [use (λ t, pathsinv0 (base_paths _ _ (uniqueness t)))|]; [
        exists y;
        intro v;
        apply pathsinv0;
        etrans; [exact (pathsinv0 (ccy (S v)))|];
        apply cancel_postcomposition;
        apply pathsinv0;
        etrans; [exact (pathsinv0 (colimInCommutes clmsh _ _ (idpath _)))|];
        apply cancel_postcomposition;
        apply (maponpaths (dmor c));
        apply isasetnat
      | reflexivity
      ]
    ).

Definition chain_shift_left_shl_colim_cocone (c : chain C)
    (clmsh := colim (CL (chain_shift_left c))) :
  ColimCocone c.
Show proof.


Definition chain_shift_left_colim_iso (c : chain C)
    (clm := colim (CL c))
    (clmls := colim (CL (chain_shift_left c))) :
  z_iso clm clmls.
Show proof.

Lemma colimσ_on_welldefined
    (A : C)
    (m : vertex nat_graph) :
  T ⊗^{ V}_{l} pair_diagram_horizontal_arrow (free_monoid_coeq_sequence_on A m)
  · next_pair_diagram (free_monoid_coeq_sequence_on A m) =
  free_monoid_coeq_sequence_on A m
  · pair_diagram_horizontal_arrow (next_pair_diagram (free_monoid_coeq_sequence_on A m)).
Show proof.
  set (coeq := next_pair_diagram_coeq (free_monoid_coeq_sequence_on A m)).
  set (coeq_comm := CoequalizerArrowEq _ coeq).
  etrans. exact (pathsinv0 coeq_comm).

  apply pathsinv0.
  etrans. apply assoc.
  reflexivity.

Definition colimσ_on (A : C) :
    colim (free_monoid_coeq_sequence_leftwhisker_colim_on T A) -->
      colim (CL (chain_shift_left (free_monoid_coeq_sequence_diagram_on A))).
Show proof.
  use colimOfArrows.
  - intro α.
    setα := free_monoid_coeq_sequence_on A α).
    exact σα.
  - abstract (
      intros m n e;
      etrans; [do 2 apply cancel_postcomposition;
              apply (bifunctor_rightid V)|];
      etrans; [apply cancel_postcomposition, id_left|];
      induction e;
      exact (colimσ_on_welldefined A m)
    ).

Lemma can_colimArrow_forms_cocone (A : C) :
    forms_cocone
      (leftwhisker_chain_with T (free_monoid_coeq_sequence_diagram_on A))
      (λ n : nat, T ⊗^{ V}_{l} colimIn (free_monoid_coeq_sequence_colim_on A) n).
Show proof.
  intros m n e.
  etrans. do 2 apply cancel_postcomposition.
          apply (bifunctor_rightid V).
  etrans. apply cancel_postcomposition.
          apply id_left.
  etrans. apply (pathsinv0 (bifunctor_leftcomp V _ _ _ _ _ _)).
  apply maponpaths.
  set (colimA := free_monoid_coeq_sequence_colim_on A).

  apply pathsinv0.
  etrans. exact (pathsinv0 (colimInCommutes colimA _ _ e)).
  induction e.
  reflexivity.

Local Definition can (A : C) :
    colim (free_monoid_coeq_sequence_leftwhisker_colim_on T A) --> T _{V} colim (free_monoid_coeq_sequence_colim_on A).
Show proof.
  use colimArrow.
  use tpair.
  - intro n.
    set (arr := colimIn (free_monoid_coeq_sequence_colim_on A) n).
    exact (T ⊗^{V}_{l} arr).
  - exact (can_colimArrow_forms_cocone A).

Local Definition top (A : C) :
    colim (free_monoid_coeq_sequence_leftwhisker_colim_on T A) --> T _{V} colim (free_monoid_coeq_sequence_colim_on A).
Show proof.
  apply (compose (colimσ_on A)).
  apply (compose (z_iso_inv (chain_shift_left_colim_iso _))).
  apply (compose (luinv_{V} _)).
  exact ((pointed_pt _ T) ⊗^{V}_{r} _).

Local Definition free_monoid_coeq_sequence_limit_step_coeq (A : C) :=
    CE _ _ (can A) (top A).

Definition free_monoid_coeq_sequence_limit_ordinal_step_on (A : C) :
    pair_diagram.
Show proof.
  exists (colim (free_monoid_coeq_sequence_colim_on A)).

  set (coeq := free_monoid_coeq_sequence_limit_step_coeq A).
  exists (CoequalizerObject _ coeq).
  exact (CoequalizerArrow _ coeq).

Definition free_monoid_coeq_sequence_converges_on (A : C) :=
    is_z_isomorphism (
      pair_diagram_horizontal_arrow
        (free_monoid_coeq_sequence_limit_ordinal_step_on A)
    ).

Section Convergence.

Definition T_preserves_diagram_on (A : C) : UU :=
  preserves_colimit
    (monoidal_left_tensor (T : CMon))
    (free_monoid_coeq_sequence_diagram_on A)
    _ (colimCocone (free_monoid_coeq_sequence_colim_on A)).

Definition T_preserves_chains_impl_T_preserves_diagram_on (A : C) :
  preserves_colimits_of_shape
    (monoidal_left_tensor (T : CMon)) nat_graph
      -> T_preserves_diagram_on A.
Show proof.
  intro H.
  intros CC cl cc.
  apply (
    H (free_monoid_coeq_sequence_diagram_on A)
      _ _ (isColimCocone_from_ColimCocone (free_monoid_coeq_sequence_colim_on A))
  ).

Context (A : C).
Context (HT : B, T_preserves_diagram_on B).

Local Definition HCC := HT _ (pr2 (free_monoid_coeq_sequence_colim_on A)).
Local Definition iso :=
    isColim_is_z_iso _
        (free_monoid_coeq_sequence_leftwhisker_colim_on T A)
        _ _ HCC.

Definition T_preserves_diagram_coeqout_arrow_on :
  T _{ V} colim (free_monoid_coeq_sequence_colim_on A) -->
    pair_diagram_lob (free_monoid_coeq_sequence_limit_ordinal_step_on A) :=
    (pr1 iso) · ((colimσ_on A) · (z_iso_inv (chain_shift_left_colim_iso _))).

Local Lemma chain_shift_left_colimIn_commutes
  (u : vertex nat_graph) :
  colimIn (CL (chain_shift_left (free_monoid_coeq_sequence_diagram_on A))) u
  · colimArrow
      (chain_shift_left_shl_colim_cocone (free_monoid_coeq_sequence_diagram_on A))
      _ (colimCocone (free_monoid_coeq_sequence_colim_on A))
  = coconeIn (colimCocone (free_monoid_coeq_sequence_colim_on A)) (S u).
Show proof.

Local Lemma leftwhisker_colimIn_equals_on
    (u : vertex nat_graph)
    (ltCC := (make_ColimCocone _ _ _ HCC)) :
  T ⊗^{ V}_{l} colimIn (free_monoid_coeq_sequence_colim_on A) u
  = colimIn (ltCC) u.
Show proof.
  apply pathsinv0.
  etrans. apply cancel_postcomposition.
          apply (bifunctor_rightid V).
  apply id_left.

Local Lemma TcolimIn_T_preserves_diagram_coeqout_arrow_on
    (u : vertex nat_graph) :
  T ⊗^{ V}_{l} colimIn (free_monoid_coeq_sequence_colim_on A) u
  · T_preserves_diagram_coeqout_arrow_on
  = free_monoid_coeq_sequence_on A u
  · coconeIn (colimCocone (free_monoid_coeq_sequence_colim_on A)) (S u).
Show proof.
  etrans. apply assoc.
  etrans. apply cancel_postcomposition.
  {
    etrans. apply cancel_postcomposition.
            exact (leftwhisker_colimIn_equals_on u).
    apply (colimArrowCommutes (make_ColimCocone _ _ _ HCC)).
  }

  etrans. apply assoc.
  etrans. apply cancel_postcomposition.
          apply (colimOfArrowsIn _ _ (free_monoid_coeq_sequence_leftwhisker_colim_on T A)).

  etrans. apply assoc'.
  apply cancel_precomposition.
  apply (chain_shift_left_colimIn_commutes).

Lemma T_preserves_diagram_coeqout_arrow_on_is_coeqout :
    can A · T_preserves_diagram_coeqout_arrow_on =
    top A · T_preserves_diagram_coeqout_arrow_on.
Show proof.
  use colimArrowUnique'.
  intro u.

  etrans. apply assoc.
  etrans. apply cancel_postcomposition.
          use (colimArrowCommutes ((free_monoid_coeq_sequence_leftwhisker_colim_on T A))).
  etrans. exact (TcolimIn_T_preserves_diagram_coeqout_arrow_on u).

  apply pathsinv0.

  etrans. apply assoc.
  etrans. apply cancel_postcomposition.
  {
    etrans. apply assoc.
    etrans. apply cancel_postcomposition.
            apply colimOfArrowsIn.
    etrans. apply assoc'.
    apply cancel_precomposition.
    etrans. apply assoc.
    etrans. apply cancel_postcomposition.
            exact (chain_shift_left_colimIn_commutes u).

    etrans. apply assoc.
    etrans. apply cancel_postcomposition.
            exact (pathsinv0 (monoidal_leftunitorinvnat V _ _ _)).
    etrans. apply assoc'.
    apply cancel_precomposition.
    exact (pathsinv0 (whiskerscommutes V (bifunctor_equalwhiskers V) _ _)).
  }

  etrans. apply cancel_postcomposition.
          apply assoc.
  etrans. apply cancel_postcomposition.
          apply assoc.
  etrans. apply assoc'.
  etrans. apply cancel_precomposition.
          exact (TcolimIn_T_preserves_diagram_coeqout_arrow_on (S u)).

  etrans. apply assoc'.
  etrans. apply assoc'.
  apply cancel_precomposition.
  etrans. apply assoc.
  etrans. apply assoc.
  exact ( colimInCommutes (free_monoid_coeq_sequence_colim_on A) _ _ (idpath (S (S u)))).

Definition T_preserves_diagram_convergence_inv :
    pair_diagram_rob (free_monoid_coeq_sequence_limit_ordinal_step_on A)
    --> pair_diagram_lob (free_monoid_coeq_sequence_limit_ordinal_step_on A).
Show proof.

Lemma T_preserves_diagram_convergence_inverse_in_precat :
  is_inverse_in_precat
    (pair_diagram_horizontal_arrow (free_monoid_coeq_sequence_limit_ordinal_step_on A))
  T_preserves_diagram_convergence_inv.
Show proof.
  split.
  - apply pathsinv0.
    use colim_endo_is_identity.
    intro u.
    etrans. apply assoc.
    etrans. apply cancel_postcomposition.
            apply assoc.
    etrans. apply assoc'.
    etrans. apply cancel_precomposition.
            apply CoequalizerArrowComm.
    etrans. apply cancel_postcomposition.
    {
      etrans. apply assoc.
      etrans. apply cancel_postcomposition.
              exact (pathsinv0 (monoidal_leftunitorinvnat V _ _ _)).
      etrans. apply assoc'.
      apply cancel_precomposition.
      exact (pathsinv0 (whiskerscommutes V (bifunctor_equalwhiskers V) _ _)).
    }
    etrans. apply cancel_postcomposition.
            apply assoc.
    etrans. apply assoc'.
    etrans. apply cancel_precomposition.
            exact (TcolimIn_T_preserves_diagram_coeqout_arrow_on u).

    etrans. apply assoc.
    exact (colimInCommutes (free_monoid_coeq_sequence_colim_on A) _ _ (idpath (S u))).
  - apply pathsinv0.
    use CoequalizerEndo_is_identity.
    etrans. apply assoc.
    etrans. apply cancel_postcomposition.
            apply CoequalizerArrowComm.

    etrans. apply assoc'.
    etrans. apply cancel_precomposition.
            apply assoc.
    etrans. apply cancel_precomposition.
    {
      etrans. apply cancel_postcomposition.
              apply assoc'.
      exact (pathsinv0 (CoequalizerArrowEq _ (free_monoid_coeq_sequence_limit_step_coeq A))).
    }
    apply (pre_comp_with_z_iso_is_inj iso).
    use colimArrowUnique'.
    intro u.
    etrans. apply cancel_precomposition.
    {
      etrans. apply assoc.
      etrans. apply cancel_postcomposition.
              exact (pr12 iso).
      apply id_left.
    }

    etrans. apply assoc.
    etrans. apply cancel_postcomposition.
            apply colimArrowCommutes.
    apply pathsinv0.
    etrans. apply assoc.
    etrans. apply cancel_postcomposition.
            apply (colimArrowCommutes (free_monoid_coeq_sequence_leftwhisker_colim_on T A)).
    etrans. apply assoc'.
    etrans. apply cancel_postcomposition.
            apply (bifunctor_rightid V).
    apply id_left.

Lemma T_preserves_diagram_impl_convergence_on :
    free_monoid_coeq_sequence_converges_on A.
Show proof.

End Convergence.

Section Monoid.

Context (Hconv: free_monoid_coeq_sequence_converges_on I_{V}).

Lemma free_monoid_coeq_sequence_converges_gives_adjoint_mon_alg :
  Mon_alg _ T.
Show proof.
  exists Tinf.
  use tpair.
  - set (limit_step := free_monoid_coeq_sequence_limit_ordinal_step_on I_{V}).
    setinfty := pair_diagram_arr limit_step).
    exactinfty · z_iso_inv_from_is_z_iso _ Hconv).
  - abstract (
      apply pathsinv0;
      use colim_endo_is_identity;
      intro n;
      

      apply pathsinv0;
      etrans; [exact (pathsinv0 (id_right _))|];
      apply cancel_precomposition;
      apply pathsinv0;
      

      etrans; [apply assoc|];
      exact (pr12 Hconv)
    ).

Local Definition TinfM := free_monoid_coeq_sequence_converges_gives_adjoint_mon_alg.

Definition Tinf_pd_Tinf_map
    (n : nat)
    (p := free_monoid_coeq_sequence_on I_{V} n) :=
   (τn : pair_diagram_lob p _{V} Tinf --> Tinf)
    (τn1 : pair_diagram_rob p _{V} Tinf --> Tinf),
      (pair_diagram_arr p ⊗^{V}_{r} Tinf) · τn1
      = α_{V} _ _ _ · (T ⊗^{V}_{l} τn) · (Mon_alg_map _ (pr2 TinfM)).

Lemma free_monoid_coeq_sequence_on_Tinf_pd_Tinf_map_coeqout_rel
    (n : nat)
    (Hn : Tinf_pd_Tinf_map n)
    (Xn := free_monoid_coeq_sequence_on I_{V} n) :
  next_pair_diagram_coeq_arr0 (free_monoid_coeq_sequence_on I_{ V} n) ⊗^{ V}_{r} Tinf
  · (α_{ V } _ _ _
     · T ⊗^{ V}_{l} pr12 Hn · Mon_alg_map _ (pr2 TinfM)) =
  next_pair_diagram_coeq_arr1 (free_monoid_coeq_sequence_on I_{ V} n) ⊗^{ V}_{r} Tinf
  · (α_{ V } _ _ _
      · T ⊗^{ V}_{l} pr12 Hn · Mon_alg_map _ (pr2 TinfM)).
Show proof.
  destruct Hn asnn1 τcomm]].
  apply pathsinv0.

  etrans. apply cancel_postcomposition.
          apply maponpaths.
          apply (bifunctor_leftcomp V).
  etrans. apply cancel_postcomposition.
          apply (bifunctor_rightcomp V).
  etrans. apply assoc.
  etrans. apply assoc4.
  etrans. apply cancel_postcomposition, cancel_precomposition.
  {
    etrans. apply assoc.
    etrans. apply cancel_postcomposition.
            exact (pathsinv0 (monoidal_associatornatleftright V _ _ _ _ _)).
    etrans. apply assoc'.
    apply cancel_precomposition.
    etrans. exact (pathsinv0 (bifunctor_leftcomp V _ _ _ _ _ _)).
    apply maponpaths.
    exact τcomm.
  }

  etrans. do 2 apply cancel_postcomposition.
  {
    etrans. apply maponpaths.
            apply (bifunctor_leftcomp V).
    apply (bifunctor_rightcomp V).
  }
  etrans. apply cancel_postcomposition, assoc.
  etrans. apply assoc'.
  etrans. apply assoc4.
  etrans. apply cancel_postcomposition, cancel_precomposition.
          apply (pathsinv0 (monoidal_associatornatleftright V _ _ _ _ _)).
  etrans. apply cancel_postcomposition, assoc.
  etrans. apply assoc'.
  etrans. apply cancel_precomposition.
  {
    etrans. apply assoc.
    apply cancel_postcomposition.
    etrans. exact (pathsinv0 (bifunctor_leftcomp V _ _ _ _ _ _)).
    etrans. apply maponpaths.
    {
      etrans. apply assoc.
      apply cancel_postcomposition.
      etrans. apply assoc.
      etrans. apply cancel_postcomposition.
              exact (pathsinv0 (monoidal_associatornatright V _ _ _ _ _)).
      etrans. apply assoc'.
      apply cancel_precomposition.
      apply (whiskerscommutes V (bifunctor_equalwhiskers V)).
    }
    etrans. apply maponpaths.
    {
      etrans. apply cancel_postcomposition, assoc.
      etrans. apply assoc'.
      etrans. apply cancel_precomposition.
      {
        etrans. exact (pathsinv0 (id_left _)).
        etrans. apply cancel_postcomposition.
                exact (pathsinv0 (pr1 (monoidal_leftunitorisolaw V _))).
        etrans. apply assoc'.
        etrans. apply cancel_precomposition.
                apply assoc.
        etrans. apply cancel_precomposition.
                exact (pr22 TinfM).
        apply id_right.
      }
      etrans. apply assoc'.
      apply cancel_precomposition.
      apply (monoidal_leftunitornat V).
    }
    reflexivity.
  }
  etrans. apply cancel_postcomposition.
          exact (pathsinv0 (monoidal_associatornatleftright V _ _ _ _ _)).
  etrans. apply assoc'.
  etrans. apply cancel_precomposition.
  {
    etrans. apply assoc.
    apply cancel_postcomposition.
    etrans. exact (pathsinv0 (bifunctor_leftcomp V _ _ _ _ _ _)).
    apply maponpaths.
    etrans. apply cancel_postcomposition.
            exact (pathsinv0 (monoidal_triangle_identity'_inv V _ _)).
    etrans. apply assoc.
    etrans. apply assoc4.
    etrans. apply cancel_postcomposition.
            etrans. apply cancel_precomposition.
                    apply (monoidal_associatorisolaw V).
            apply id_right.
    etrans. apply assoc.
    etrans. apply cancel_postcomposition.
            apply (monoidal_leftunitorisolaw V).
    apply id_left.
  }
  etrans. apply assoc.
  etrans. exact (pathsinv0 τcomm).

  apply pathsinv0.
  etrans. apply cancel_postcomposition.
  {
    etrans. apply (bifunctor_rightcomp V).
    apply cancel_precomposition.
    apply (bifunctor_rightcomp V).
  }
  etrans. apply assoc'.
  apply cancel_precomposition.

  etrans. apply assoc.
  etrans. apply assoc4.
  etrans. apply cancel_postcomposition, cancel_precomposition.
  {
    etrans. apply assoc.
    etrans. apply cancel_postcomposition.
            apply (pathsinv0 (monoidal_associatornatright V _ _ _ _ _)).
    etrans. apply assoc'.
    apply cancel_precomposition.
    apply (whiskerscommutes V (bifunctor_equalwhiskers V)).
  }

  etrans. apply cancel_postcomposition, assoc.
  etrans. apply cancel_postcomposition, assoc.
  etrans. apply assoc'.
  etrans. apply cancel_precomposition.
  {
    etrans. exact (pathsinv0 (id_left _)).
    etrans. apply cancel_postcomposition.
            exact (pathsinv0 (pr1 (monoidal_leftunitorisolaw V _))).
    etrans. apply assoc'.
    etrans. apply cancel_precomposition.
    {
      etrans. apply assoc.
      exact (pr22 TinfM).
    }
    apply id_right.
  }
  etrans. do 3 apply cancel_postcomposition.
          exact (pathsinv0 (monoidal_triangle_identity'_inv V _ _)).
  etrans. apply cancel_postcomposition, assoc4.
  etrans. do 2 apply cancel_postcomposition.
          etrans. apply cancel_precomposition.
                  apply (monoidal_associatorisolaw V).
          apply id_right.
  etrans. apply assoc'.
  etrans. apply cancel_precomposition.
          apply (monoidal_leftunitornat V).
  etrans. apply assoc.
  etrans. apply cancel_postcomposition.
          apply (monoidal_leftunitorisolaw V).
  apply id_left.

Definition rt_coeq_coequalizer
    {A : C}
    (rt_coeq : preserves_colimits_of_shape
          (monoidal_right_tensor (A : CMon)) Coequalizer_graph)
    {a b : C} {f g : a --> b}
    (coeq : Coequalizer _ f g) :
  Coequalizer _ (f ⊗^{V}_{r} A) (g ⊗^{V}_{r} A).
Show proof.
  set (mapped_colimcocone := rt_coeq _ _ _ (isColimCocone_from_ColimCocone coeq)).

  use make_Coequalizer.
  - exact (CoequalizerObject _ coeq _{V} A).
  - exact (CoequalizerArrow _ coeq ⊗^{V}_{r} A).
  - abstract (
      etrans; [exact (pathsinv0 (bifunctor_rightcomp V _ _ _ _ _ _))|];
      apply pathsinv0;
      etrans; [exact (pathsinv0 (bifunctor_rightcomp V _ _ _ _ _ _))|];
      apply maponpaths;
      exact (pathsinv0 (CoequalizerArrowEq _ coeq))
    ).
  - use make_isCoequalizer.
    intros e h' H.
    transparent assert (cc : (cocone
            (mapdiagram (monoidal_right_tensor (A : CMon))
              (Coequalizer_diagram C f g)) e)).
    {
      use make_cocone.
      - use two_rec_dep.
        * exact ((f ⊗^{V}_{r} A) · h').
        * exact h'.
      - use two_rec_dep; use two_rec_dep.
        * exact (empty_rect _).
        * intro e'. induction e'.
          + etrans. apply assoc'.
            etrans. apply cancel_precomposition, cancel_postcomposition.
                    apply (bifunctor_leftid V).
            apply cancel_precomposition, id_left.
          + etrans. apply assoc'.
            etrans. apply cancel_precomposition, cancel_postcomposition.
                    apply (bifunctor_leftid V).
            etrans. apply cancel_precomposition, id_left.
            apply (! H).
        * exact (empty_rect _).
        * exact (empty_rect _).
    }

    destruct (mapped_colimcocone e cc) as [x uniqueness].
    use unique_exists.
    * exact (pr1 x).
    * abstract (
        etrans; [|exact (pr2 x ( 1)%stn)];
        apply pathsinv0;
        etrans; [apply assoc'|];
        apply cancel_precomposition;
        etrans; [apply cancel_postcomposition;
                apply (bifunctor_leftid V)|];
        apply id_left
      ).
    * abstract (
        intro y; apply homset_property
      ).
    * abstract (
        intros y ccy;
        etrans; [use (λ t, base_paths _ _ (uniqueness (y,, t)))|]; [|reflexivity];
        use two_rec_dep; (
          etrans; [apply cancel_postcomposition;
                  etrans; [apply cancel_precomposition, (bifunctor_leftid V)|];
                  apply id_right|]
        ); [|exact ccy];
        apply pathsinv0;
        etrans; [apply cancel_precomposition;
                exact (pathsinv0 ccy)|];
        etrans; [apply assoc|];
        apply cancel_postcomposition;
        etrans; [exact (pathsinv0 (bifunctor_rightcomp V _ _ _ _ _ _))|];
        apply maponpaths;
        exact (coconeInCommutes (pr21 coeq) (stnpr 0) (stnpr 1) (inl tt))
      ).


Context (rt_coeq : rt_preserves_coequalizers V).

Definition free_monoid_coeq_sequence_on_Tinf_pd_Tinf_map_coeqout
    (n : nat)
    (Hn : Tinf_pd_Tinf_map n)
    (Xn1 := free_monoid_coeq_sequence_on I_{V} (S n)) :
  pair_diagram_rob Xn1 _{V} Tinf --> Tinf.
Show proof.
  setn1 := pr12 Hn).
  set (coeq := next_pair_diagram_coeq (free_monoid_coeq_sequence_on I_{V} n)).
  set (rt_coequalizer := rt_coeq_coequalizer (rt_coeq Tinf) coeq).
  use (CoequalizerOut _ rt_coequalizer).
  - exact (α_{V} _ _ _ · (T ⊗^{V}_{l} τn1) · Mon_alg_map _ (pr2 TinfM)).
  - exact (free_monoid_coeq_sequence_on_Tinf_pd_Tinf_map_coeqout_rel n Hn).

Definition free_monoid_coeq_sequence_on_Tinf_pd_Tinf_map
    (n : nat) :
  Tinf_pd_Tinf_map n.
Show proof.
  induction n as [|n Hn].
  - exists (lu_{V} _).
    exists (ru_{V} T ⊗^{V}_{r} Tinf · Mon_alg_map _ (pr2 TinfM)).
    abstract (
      etrans; [apply cancel_postcomposition;
              apply (bifunctor_rightid V)|];
      etrans; [apply id_left|];
      apply pathsinv0;
      apply cancel_postcomposition;
      apply (monoidal_triangleidentity V)
    ).
  - setn1 := pr12 Hn).
    exists τn1.
    exists (free_monoid_coeq_sequence_on_Tinf_pd_Tinf_map_coeqout n Hn).
    abstract (
      set (coeq := next_pair_diagram_coeq (free_monoid_coeq_sequence_on I_{V} n));
      set (rt_coequalizer := rt_coeq_coequalizer (rt_coeq Tinf) coeq);
      apply (CoequalizerArrowComm _ rt_coequalizer)
    ).

Definition free_monoid_coeq_sequence_diagram_on_Tinf_Tinf_map
    (n : vertex nat_graph) :
  dob (free_monoid_coeq_sequence_diagram_on I_{V}) n _{V} Tinf --> Tinf.
Show proof.

Lemma free_monoid_coeq_sequence_colim_on_Tinf_Tinf_map_formscocone
    (m : vertex nat_graph) :
  pair_diagram_horizontal_arrow (free_monoid_coeq_sequence_on I_{V} m) ⊗^{V}_{r} Tinf
  · free_monoid_coeq_sequence_diagram_on_Tinf_Tinf_map (S m)
  = free_monoid_coeq_sequence_diagram_on_Tinf_Tinf_map m.
Show proof.
  set (pdTinfmap_rel := pr22 (free_monoid_coeq_sequence_on_Tinf_pd_Tinf_map m)).
  etrans. apply cancel_postcomposition.
          apply (bifunctor_rightcomp V).
  etrans. apply assoc'.
  etrans. apply cancel_precomposition.
          exact pdTinfmap_rel.

  etrans. apply cancel_postcomposition.
          apply (bifunctor_rightcomp V).
  etrans. apply assoc.
  etrans. apply cancel_postcomposition, assoc.
  etrans. apply assoc'.
  etrans. apply assoc4.
  etrans. apply cancel_postcomposition, cancel_precomposition.
          exact (pathsinv0 (monoidal_associatornatright V _ _ _ _ _)).
  etrans. apply cancel_postcomposition, assoc.
  etrans. apply assoc.
  etrans. apply assoc4.
  etrans. apply cancel_postcomposition, cancel_precomposition.
          apply (whiskerscommutes V (bifunctor_equalwhiskers V)).
  etrans. apply cancel_postcomposition, assoc.
  etrans. apply assoc'.
  etrans. apply cancel_precomposition.
  {
    etrans. exact (pathsinv0 (id_left _)).
    etrans. apply cancel_postcomposition.
            exact (pathsinv0 (pr1 (monoidal_leftunitorisolaw V _))).
    etrans. apply assoc'.
    etrans. apply cancel_precomposition.
            etrans. apply assoc.
            exact (pr22 TinfM).
    apply id_right.
  }
  etrans. apply assoc'.
  etrans. apply cancel_precomposition.
          apply (monoidal_leftunitornat V).
  etrans. apply assoc.
  etrans. apply cancel_postcomposition.
  {
    etrans. do 2 apply cancel_postcomposition.
            exact (pathsinv0 (monoidal_triangle_identity'_inv V _ _)).
    etrans. apply assoc4.
    etrans. apply cancel_postcomposition, cancel_precomposition.
            apply (monoidal_associatorisolaw V).
    etrans. apply cancel_postcomposition.
            apply id_right.
    apply (monoidal_leftunitorisolaw V).
  }
  apply id_left.

We define the map from free_monoid_coeq_sequence_rightwhisker_colim_on, i.e. from the chain on I{V} rightwhiskered with T∞. It is possible, and in fact cleaner, to define a map colim (chain_on T∞) --> T∞, however, for this we need a morphism T∞ ⊗ T∞ --> colim (chain_on T∞), which is harder to define than T∞ ⊗ T∞ --> colim ((chain_on I{V}) ⊗ T∞), using the preservation of colimits of the right- whiskering functor. The two chains are in fact the same though, as they start with I ⊗ T∞ --> T ⊗ T∞ --> ... and T∞ --> T ⊗ T∞ --> ... respectively.
Definition free_monoid_coeq_sequence_colim_on_Tinf_Tinf_map :
    colim (free_monoid_coeq_sequence_rightwhisker_colim_on Tinf I_{V}) --> Tinf.
Show proof.
  use colimArrow.
  use tpair.
  - intro n.
    exact (free_monoid_coeq_sequence_diagram_on_Tinf_Tinf_map n).
  - abstract (
      intros m n e;
      induction e;
      etrans; [apply cancel_postcomposition, cancel_precomposition;
              apply (bifunctor_leftid V)|];
      etrans; [apply cancel_postcomposition, id_right|];
      exact (free_monoid_coeq_sequence_colim_on_Tinf_Tinf_map_formscocone m)
    ).

Context (rt_chain : rt_preserves_chains V).

Definition Tinf_monoid_mul_iso
    (rt_colim := free_monoid_coeq_sequence_rightwhisker_colim_on Tinf I_{V}) :
  z_iso (colim (rt_colim)) (Tinf _{V} Tinf).
Show proof.
  set (ccTinf := free_monoid_coeq_sequence_colim_on I_{V}).
  set (rt_ccTinf := rt_chain Tinf _ _ _ (isColimCocone_from_ColimCocone ccTinf)).
  set (iso := (_,, isColim_is_z_iso _ rt_colim _ _ rt_ccTinf) : z_iso _ _).
  exact iso.

Definition Tinf_monoid_mul :
  (Tinf _{V} Tinf) --> Tinf.
Show proof.

Definition Tinf_monoid_data :
    monoid_data V Tinf :=
  (Tinf_monoid_mul,, colimIn free_monoid_coeq_sequence_colim_unit 0).

Lemma Tinf_monoid_mul_iso_precomp_with_colimIn
    (v : vertex nat_graph) :
  colimIn free_monoid_coeq_sequence_colim_unit v ⊗^{V}_{r} Tinf
  · z_iso_inv Tinf_monoid_mul_iso
  = coconeIn (colimCocone (free_monoid_coeq_sequence_rightwhisker_colim_on Tinf I_{V})) v.
Show proof.
  cbn.
  match goal with
  |- _ · colimArrow ?CC_ _ _ = _ => set (CC := CC_)
  end.
  etrans; [|exact (colimArrowCommutes CC _ _ v)].
  apply cancel_postcomposition.
  apply pathsinv0.
  etrans. apply cancel_precomposition.
          apply (bifunctor_leftid V).
  apply id_right.

Lemma Tinf_monoid_unit_left :
    monoid_laws_unit_left V Tinf_monoid_data.
Show proof.
  etrans. apply assoc.
  apply (pre_comp_with_z_iso_is_inj (is_inverse_in_precat_inv (monoidal_leftunitorisolaw V _))).
  apply pathsinv0.
  etrans. exact (pr2 (monoidal_leftunitorisolaw V _)).
  use colim_endo_is_identity.
  intro v.
  etrans. do 2 apply cancel_precomposition.
          apply cancel_postcomposition.
          exact (Tinf_monoid_mul_iso_precomp_with_colimIn 0).

  etrans. do 2 apply cancel_precomposition.
  {
    set (CC := free_monoid_coeq_sequence_rightwhisker_colim_on Tinf I_{ V}).
    apply (colimArrowCommutes CC Tinf _ 0).
  }
  etrans. apply cancel_precomposition.
          apply (pr2 (monoidal_leftunitorisolaw V _)).
  apply id_right.

Definition Tinf_rightwhisker_inclusion
    (v : vertex nat_graph) :
  dob (free_monoid_coeq_sequence_diagram_on I_{V}) v
  --> dob (rightwhisker_chain_with Tinf (free_monoid_coeq_sequence_diagram_on I_{V})) v.
Show proof.

Lemma Tinf_rightwhisker_inclusion_commutes
    (v : vertex nat_graph) :
  Tinf_rightwhisker_inclusion v
  · dmor (free_monoid_coeq_sequence_diagram_on I_{ V}) (idpath (S v)) ⊗^{V}_{r} Tinf =
  dmor (free_monoid_coeq_sequence_diagram_on I_{V}) (idpath (S v))
  · Tinf_rightwhisker_inclusion (S v).
Show proof.
  etrans. apply assoc'.
  etrans. apply cancel_precomposition.
          exact (pathsinv0 (whiskerscommutes V (bifunctor_equalwhiskers V) _ _)).
  etrans. apply assoc.
  etrans. apply cancel_postcomposition.
          apply (monoidal_rightunitorinvnat V).
  apply assoc'.

Context (HT : B, T_preserves_diagram_on B).

Lemma Tinf_limit_step_colimIn_commutes
    (v : vertex nat_graph) :
  T ⊗^{ V}_{l} colimIn free_monoid_coeq_sequence_colim_unit (S v)
  · CoequalizerArrow C (free_monoid_coeq_sequence_limit_step_coeq I_{ V})
  = CoequalizerArrow C (next_pair_diagram_coeq (free_monoid_coeq_sequence_on I_{V} v))
  · colimIn free_monoid_coeq_sequence_colim_unit (S (S v))
  · pair_diagram_horizontal_arrow (free_monoid_coeq_sequence_limit_ordinal_step_on I_{V}).
Show proof.
  show_id_type.
  set (coeq := free_monoid_coeq_sequence_limit_step_coeq I_{V}).
  set (limstepcomm := CoequalizerArrowEq _ coeq).
  set (TTinfin := colimIn (free_monoid_coeq_sequence_leftwhisker_colim_on T I_{ V}) (S v)).
  set (TTinfin_limstepcomm := cancel_precomposition _ _ _ _ _ _ TTinfin limstepcomm).
  use (pathscomp1 TTinfin_limstepcomm).
  - etrans. apply assoc.
    etrans. apply cancel_postcomposition.
            apply (colimArrowCommutes).
    reflexivity.
  - etrans. apply assoc.
    unfold top.
    etrans. apply cancel_postcomposition.
    {
      etrans. apply assoc.
      etrans. apply cancel_postcomposition.
              apply (colimArrowCommutes).
      etrans. apply assoc'.
      apply cancel_precomposition.
      etrans. apply assoc.
      etrans. apply cancel_postcomposition.
              apply (chain_shift_left_colimIn_commutes).
      reflexivity.
    }
    cbn.
    etrans. apply assoc'.
    apply pathsinv0.
    etrans. apply assoc'.
    apply cancel_precomposition.
    apply pathsinv0.
    etrans. apply assoc'.
    reflexivity.

Lemma Tinf_colimIn_alg_map_commutes
    (v : vertex nat_graph) :
  T ⊗^{ V}_{l} colimIn free_monoid_coeq_sequence_colim_unit v
  · (Mon_alg_map _ (pr2 TinfM))
  = free_monoid_coeq_sequence_on I_{ V} (v)
  · colimIn free_monoid_coeq_sequence_colim_unit (S v).
Show proof.
  etrans. apply assoc.
  apply (post_comp_with_z_iso_is_inj (pr2 Hconv)).
  etrans. apply assoc'.
  etrans. apply cancel_precomposition.
          exact (pr22 Hconv).
  etrans. apply id_right.

  apply pathsinv0.
  etrans. apply assoc.
  etrans. apply cancel_postcomposition.
  {
    etrans. apply assoc'.
    etrans. apply cancel_precomposition.
            etrans. apply assoc.
            etrans. apply cancel_postcomposition.
                    exact (pathsinv0 (monoidal_leftunitorinvnat V _ _ _)).
            etrans. apply assoc'.
            apply cancel_precomposition.
            exact (pathsinv0 (whiskerscommutes V (bifunctor_equalwhiskers V) _ _)).
    etrans. apply assoc.
    apply assoc.
  }

  apply pathsinv0.
  etrans. apply cancel_postcomposition.
  {
    set (isHCC := HT _ (pr2 (free_monoid_coeq_sequence_colim_on I_{V}))).
    set (HCC := make_ColimCocone _ _ _ isHCC).
    etrans.
    {
      etrans. exact (pathsinv0 (id_left _)).
      etrans. apply cancel_postcomposition.
              exact (pathsinv0 (bifunctor_rightid V _ _)).
      exact (pathsinv0 (colimInCommutes HCC _ _ (idpath (S v)))).
    }
    etrans. apply cancel_postcomposition.
    {
      etrans. apply cancel_postcomposition.
              apply (bifunctor_rightid V).
      apply id_left.
    }
    etrans. apply cancel_precomposition.
    {
      etrans. apply cancel_postcomposition.
              apply (bifunctor_rightid V).
      apply id_left.
    }
    reflexivity.
  }
  etrans. apply assoc'.
  etrans. apply cancel_precomposition.
          exact (Tinf_limit_step_colimIn_commutes v).
  etrans. apply assoc.
  etrans. apply cancel_postcomposition.
          apply assoc.
  apply pathsinv0.
  etrans. apply assoc'.
  etrans. apply cancel_precomposition.
          exact (Tinf_limit_step_colimIn_commutes v).
  etrans. apply assoc.
  etrans. apply cancel_postcomposition.
          apply assoc.

  apply cancel_postcomposition.
  apply cancel_postcomposition.

  set (coeq := (next_pair_diagram_coeq (free_monoid_coeq_sequence_on I_{ V} v))).

  etrans. apply assoc'.
  etrans. apply assoc'.
  etrans. apply cancel_precomposition.
          apply assoc.
  etrans. apply assoc.
  exact (CoequalizerArrowEq _ coeq).

Lemma CoequalizerOutUnique' {a b : C} {f g : Ca, b}
    (E : Coequalizer C f g) {e : C} {w w' : Ccolim E, e}
    (H : CoequalizerArrow _ E · w = CoequalizerArrow _ E · w') :
  w = w'.
Show proof.
  use (colimArrowUnique' E).
  use two_rec_dep.
  - set (X := colimInCommutes E One Two (ii1 tt)).
    apply (maponpaths (λ h : _, h · w)) in X.
    use (pathscomp0 (!X)); rewrite <- assoc.
    apply pathsinv0.
    set (Y := colimInCommutes E One Two (ii1 tt)).
    apply (maponpaths (λ h : _, h · w')) in Y.
    use (pathscomp0 (!Y)); rewrite <- assoc.
    apply cancel_precomposition.
    exact (!H).
  - exact H.

Need to show that
                                  mon_map
  Xα+ --> Xα+ ⊗ I --> Xα+ ⊗ T∞ -------> T∞
                    =
  Xα+ ----------------------------------> T∞
                  colimIn
Lemma Tinf_monoid_unit_right_pointwise (v : vertex nat_graph) :
  ruinv^{ V }_{ pair_diagram_lob (free_monoid_coeq_sequence_on I_{ V} v)}
  · (pair_diagram_lob (free_monoid_coeq_sequence_on I_{ V} v)
    ⊗^{ V}_{l} colimIn free_monoid_coeq_sequence_colim_unit 0
    · free_monoid_coeq_sequence_diagram_on_Tinf_Tinf_map v) =
  colimIn free_monoid_coeq_sequence_colim_unit v.
Show proof.
  induction v as [|v IHv].
  {
    etrans. apply cancel_precomposition.
            apply (monoidal_leftunitornat V).
    etrans. apply assoc.
    etrans. do 2 apply cancel_postcomposition.
            exact (pathsinv0 (unitorsinv_coincide_on_unit V)).
    etrans. apply cancel_postcomposition.
            apply (monoidal_leftunitorisolaw V).
    apply id_left.
  }
  induction v as [|v _].
  - etrans. apply cancel_precomposition.
    {
      etrans. apply assoc.
      apply cancel_postcomposition.
      exact (pathsinv0 (whiskerscommutes V (bifunctor_equalwhiskers V) _ _)).
    }
    etrans. apply assoc.
    etrans. apply cancel_postcomposition.
            etrans. apply assoc.
            etrans. apply cancel_postcomposition.
                    etrans. apply (monoidal_rightunitorinvnat V).
                    exact (pr1 (monoidal_rightunitorisolaw V _)).
            apply id_left.
    etrans. exact (Tinf_colimIn_alg_map_commutes 0).
    apply id_left.
  - set (Hn := free_monoid_coeq_sequence_on_Tinf_pd_Tinf_map v).
    setn1 := pr12 Hn).
    set (coeq := next_pair_diagram_coeq (free_monoid_coeq_sequence_on I_{V} v)).
    use CoequalizerOutUnique'.
    etrans. apply assoc.
    etrans. apply cancel_postcomposition.
            exact (pathsinv0 (monoidal_rightunitorinvnat V _ _ _)).
    etrans. apply assoc'.
    etrans. apply cancel_precomposition.
            etrans. apply assoc.
            etrans. apply cancel_postcomposition.
                    apply (whiskerscommutes V (bifunctor_equalwhiskers V)).
            etrans. apply assoc'.
            apply cancel_precomposition.
            exact (pr22 (free_monoid_coeq_sequence_on_Tinf_pd_Tinf_map (S v))).

    etrans. apply cancel_precomposition.
            etrans. apply assoc.
            apply cancel_postcomposition.
            etrans. apply assoc.
            apply cancel_postcomposition.
            exact (pathsinv0 (monoidal_associatornatleft V _ _ _ _ _)).
    etrans. apply cancel_postcomposition.
            exact (pathsinv0 (monoidal_triangle_identity''_inv V _ _)).
    etrans. apply assoc'.
    etrans. apply cancel_precomposition.
            etrans. apply assoc.
            apply cancel_postcomposition.
            etrans. apply assoc.
            apply cancel_postcomposition.
            etrans. apply assoc.
            etrans. apply cancel_postcomposition.
                    apply (monoidal_associatorisolaw V).
            apply id_left.
    etrans. apply assoc.
    etrans. apply cancel_postcomposition.
            etrans. apply cancel_precomposition.
                    exact (pathsinv0 (bifunctor_leftcomp V _ _ _ _ _ _)).
            etrans. exact (pathsinv0 (bifunctor_leftcomp V _ _ _ _ _ _)).
            apply maponpaths.
            exact IHv.
    exact (Tinf_colimIn_alg_map_commutes (S v)).

Lemma Tinf_monoid_unit_right :
    monoid_laws_unit_right V Tinf_monoid_data.
Show proof.
  etrans. apply assoc.
  apply (pre_comp_with_z_iso_is_inj (is_inverse_in_precat_inv (monoidal_rightunitorisolaw V _))).
  apply pathsinv0.
  etrans. exact (pr2 (monoidal_rightunitorisolaw V _)).
  use colim_endo_is_identity.
  intro v.

  etrans. apply assoc.
  etrans. apply cancel_postcomposition.
          exact (pathsinv0 (monoidal_rightunitorinvnat V _ _ _)).
  etrans. apply assoc'.
  etrans. apply cancel_precomposition.
  {
    etrans. apply assoc.
            apply cancel_postcomposition.
    etrans. apply assoc.
    etrans. apply cancel_postcomposition.
            apply (whiskerscommutes V (bifunctor_equalwhiskers V)).
    etrans. apply assoc'.
    apply cancel_precomposition.
    exact (Tinf_monoid_mul_iso_precomp_with_colimIn v).
  }

  
  etrans. apply cancel_precomposition.
          etrans. apply assoc'.
          apply cancel_precomposition.
  {
    set (CC := free_monoid_coeq_sequence_rightwhisker_colim_on Tinf I_{ V}).
    apply (colimArrowCommutes CC Tinf _ v).
  }
  exact (Tinf_monoid_unit_right_pointwise v).

Definition rt_chain_iso_v (A : C) (v : vertex nat_graph) :=
  z_iso
    (dob (rightwhisker_chain_with A (free_monoid_coeq_sequence_diagram_on I_{V})) v)
    (dob (free_monoid_coeq_sequence_diagram_on A) v).

Definition z_iso_from_rt_chain_iso_v {A : C} {v : vertex nat_graph}
    (Cisv : rt_chain_iso_v A v) : z_iso _ _ := Cisv.
Coercion z_iso_from_rt_chain_iso_v : rt_chain_iso_v >-> z_iso.

Definition rt_chain_iso_pair_total_rel {A : C} {v : vertex nat_graph}
    (iv : rt_chain_iso_v A v) (iSv : rt_chain_iso_v A (S v)) :=
  (z_iso_mor iv) · (dmor (free_monoid_coeq_sequence_diagram_on A) (idpath (S v)))
  = (dmor (rightwhisker_chain_with A (free_monoid_coeq_sequence_diagram_on I_{V})) (idpath (S v)))
  · (z_iso_mor iSv).

Definition rt_chain_iso_pair_rel {A : C} {v : vertex nat_graph}
    (iv : rt_chain_iso_v A v) (iSv : rt_chain_iso_v A (S v)) :=
  free_monoid_coeq_sequence_on I_{ V} v ⊗^{ V}_{r} A
  · (z_iso_mor iSv)
  = α^{ V }_{_, _, _}
  · T ⊗^{ V}_{l} (z_iso_mor iv)
  · free_monoid_coeq_sequence_on A v.

Lemma rt_chain_iso_pair_rel_impl_total_rel
    {A : C} {v : vertex nat_graph}
    {iv : rt_chain_iso_v A v} {iSv : rt_chain_iso_v A (S v)}
    (H : rt_chain_iso_pair_rel iv iSv) :
  rt_chain_iso_pair_total_rel iv iSv.
Show proof.
  etrans. apply assoc.
  etrans. apply cancel_postcomposition.
  {
    etrans. apply assoc.
    apply cancel_postcomposition.
    exact (pathsinv0 (monoidal_leftunitorinvnat V _ _ _)).
  }
  etrans. apply assoc4.
  etrans. apply cancel_postcomposition, cancel_precomposition.
          exact (pathsinv0 (whiskerscommutes V (bifunctor_equalwhiskers V) _ _)).
  etrans. apply cancel_postcomposition, assoc.
  etrans. apply assoc'.
  etrans. apply cancel_precomposition.
  {
    etrans. exact (pathsinv0 (id_left _)).
    etrans. apply cancel_postcomposition.
            exact (pathsinv0 (pr2 (monoidal_associatorisolaw V _ _ _))).
    etrans. apply assoc'.
    apply cancel_precomposition.
    etrans. apply assoc.
    exact (pathsinv0 H).
  }
  etrans. apply assoc.
  etrans. apply assoc.
  apply cancel_postcomposition.
  apply pathsinv0.
  etrans. apply cancel_precomposition.
          apply (bifunctor_leftid V).
  etrans. apply id_right.
  etrans. apply (bifunctor_rightcomp V).
  etrans. apply cancel_postcomposition.
          apply (bifunctor_rightcomp V).
  apply cancel_postcomposition.
  cbn.
  etrans. apply cancel_postcomposition.
  exact (pathsinv0 (monoidal_triangle_identity'_inv V _ _)).
  etrans. apply assoc'.
  etrans. apply cancel_precomposition.
          exact (pathsinv0 (monoidal_associatorinvnatright V _ _ _ _ _)).
  apply assoc.

Definition rt_chain_iso_pair
    (A : C)
    (v : vertex nat_graph) :=
   (iv : rt_chain_iso_v A v) (iSv : rt_chain_iso_v A (S v)),
      rt_chain_iso_pair_rel iv iSv.
Definition rtisp_liso
    {A : C} {v : vertex nat_graph}
    (Cisv : rt_chain_iso_pair A v) :=
  pr1 Cisv.
Definition rtisp_riso
    {A : C} {v : vertex nat_graph}
    (Cisv : rt_chain_iso_pair A v) :=
  pr12 Cisv.
Definition rtisp_rel
    {A : C} {v : vertex nat_graph}
    (Cisv : rt_chain_iso_pair A v) :=
  pr22 Cisv.

Definition make_rt_chain_iso_pair
    {A : C} {v : vertex nat_graph}
    {iv : rt_chain_iso_v A v} {iSv : rt_chain_iso_v A (S v)}
    (rel : rt_chain_iso_pair_rel iv iSv) :
      rt_chain_iso_pair A v :=
  (_,, _,, rel).

Lemma rt_chain_iso_pair_ind_iscoeqout
    (A : C) (v : vertex nat_graph)
    (Cisp : rt_chain_iso_pair A v) :
    next_pair_diagram_coeq_arr0 (free_monoid_coeq_sequence_on I_{ V} v) ⊗^{ V}_{r} A
    · (α^{ V }_{_, _, _}
       · (T ⊗^{ V}_{l} z_iso_mor (rtisp_riso Cisp)
          · CoequalizerArrow C (next_pair_diagram_coeq (free_monoid_coeq_sequence_on A v)))) =
    next_pair_diagram_coeq_arr1 (free_monoid_coeq_sequence_on I_{ V} v) ⊗^{ V}_{r} A
    · (α^{ V }_{_, _, _}
       · (T ⊗^{ V}_{l} z_iso_mor (rtisp_riso Cisp)
          · CoequalizerArrow C
              (next_pair_diagram_coeq (free_monoid_coeq_sequence_on A v)))).
Show proof.
  set (totrel := rt_chain_iso_pair_rel_impl_total_rel (rtisp_rel Cisp)).

  apply pathsinv0.
  etrans. apply assoc.
  etrans. apply cancel_postcomposition.
          exact (pathsinv0 (monoidal_associatornatleftright V _ _ _ _ _)).
  etrans. apply assoc'.
  etrans. apply cancel_precomposition.
  {
    etrans. apply assoc.
    apply cancel_postcomposition.
    etrans. exact (pathsinv0 (bifunctor_leftcomp V _ _ _ _ _ _)).
    apply maponpaths.
    etrans. apply cancel_postcomposition.
    {
      etrans. exact (pathsinv0 (id_right _)).
      apply cancel_precomposition.
      exact (pathsinv0 (bifunctor_leftid V _ _)).
    }
    exact (pathsinv0 totrel).
  }
  etrans. apply cancel_precomposition.
  {
    etrans. apply cancel_postcomposition.
            apply (bifunctor_leftcomp V).
    etrans. apply assoc'.
    apply cancel_precomposition.
    exact (pathsinv0 (CoequalizerArrowEq _ _)).
  }
  etrans. apply assoc.
  etrans. apply assoc.
  apply pathsinv0.
  etrans. apply assoc.
  etrans. apply assoc.
  apply cancel_postcomposition.
  unfold next_pair_diagram_coeq_arr0.
  etrans. apply cancel_postcomposition.
  {
    etrans. apply cancel_postcomposition.
    {
      etrans. apply (bifunctor_rightcomp V).
      apply cancel_precomposition.
      apply (bifunctor_rightcomp V).
    }
    etrans. apply assoc'.
    apply cancel_precomposition.
    etrans. apply assoc'.
    apply cancel_precomposition.
    exact (pathsinv0 (monoidal_associatornatright V _ _ _ _ _)).
  }
  etrans. apply assoc'.
  etrans. apply cancel_precomposition.
          etrans. apply cancel_postcomposition.
                  apply assoc.
          etrans. apply assoc'.
          apply cancel_precomposition.
          apply (whiskerscommutes V (bifunctor_equalwhiskers V)).
  etrans. apply assoc.
  etrans. apply assoc.
  apply pathsinv0.
  etrans. apply assoc.
  etrans. apply assoc.
  apply cancel_postcomposition.
  apply pathsinv0.
  etrans. apply cancel_postcomposition, cancel_precomposition.
  {
    etrans. apply cancel_postcomposition.
            exact (pathsinv0 (monoidal_triangle_identity'_inv V _ _)).
    etrans. apply assoc'.
    etrans. apply cancel_precomposition.
            apply (monoidal_associatorisolaw V).
    apply id_right.
  }
  etrans. apply assoc'.
  etrans. apply cancel_precomposition.
          apply (monoidal_leftunitorinvnat V).
  etrans. apply assoc.
  apply cancel_postcomposition.
  exact (rtisp_rel Cisp).

Lemma rt_chain_iso_pair_ind_inv_iscoeqout
  (A : C) (v : vertex nat_graph)
  (Cisp : rt_chain_iso_pair A v) :
    next_pair_diagram_coeq_arr0 (free_monoid_coeq_sequence_on A v)
    · (T ⊗^{ V}_{l} z_iso_inv (rtisp_riso Cisp)
      · (αinv^{ V }_{_, _, _}
        · CoequalizerArrow C (next_pair_diagram_coeq (free_monoid_coeq_sequence_on I_{ V} v)) ⊗^{V}_{r} A
        )
      )
    = next_pair_diagram_coeq_arr1 (free_monoid_coeq_sequence_on A v)
    · (T ⊗^{ V}_{l} z_iso_inv (rtisp_riso Cisp)
      · (αinv^{ V }_{_, _, _}
        · CoequalizerArrow C (next_pair_diagram_coeq (free_monoid_coeq_sequence_on I_{ V} v)) ⊗^{V}_{r} A
        )
      ).
Show proof.
  set (totrel := rt_chain_iso_pair_rel_impl_total_rel (rtisp_rel Cisp)).

  assert (totrel' :
      pair_diagram_horizontal_arrow (free_monoid_coeq_sequence_on A v)
      · inv_from_z_iso (rtisp_riso Cisp)
      = inv_from_z_iso (rtisp_liso Cisp)
      · (pair_diagram_horizontal_arrow (free_monoid_coeq_sequence_on I_{ V} v)) ⊗^{V}_{r} A
  ).
  {
    apply (post_comp_with_z_iso_is_inj (rtisp_riso Cisp)).
    etrans. apply assoc'.
    etrans. apply cancel_precomposition.
            exact (pr222 (rtisp_riso Cisp)).
    etrans. apply id_right.
    apply (pre_comp_with_z_iso_is_inj (rtisp_liso Cisp)).
    apply pathsinv0.
    etrans. apply assoc.
    etrans. apply cancel_postcomposition.
            etrans. apply assoc.
            apply cancel_postcomposition.
            exact (pr122 (rtisp_liso Cisp)).
    etrans. apply assoc'.
    etrans. apply id_left.
    apply pathsinv0.
    etrans. exact totrel.
    etrans. apply cancel_postcomposition.
            etrans. apply cancel_precomposition.
                    apply (bifunctor_leftid V).
            apply id_right.
    reflexivity.
  }

  apply pathsinv0.
  etrans. apply assoc.
  etrans. apply cancel_postcomposition.
  {
    etrans. exact (pathsinv0 (bifunctor_leftcomp V _ _ _ _ _ _)).
    etrans. apply maponpaths.
            exact totrel'.
    apply (bifunctor_leftcomp V).
  }

  etrans. apply assoc.
  etrans. apply assoc4.
  etrans. apply cancel_postcomposition, cancel_precomposition.
          apply (monoidal_associatorinvnatleftright V).
  etrans. apply cancel_postcomposition, assoc.
  etrans. apply assoc'.
  etrans. apply cancel_precomposition.
  {
    etrans. exact (pathsinv0 (bifunctor_rightcomp V _ _ _ _ _ _)).
    etrans. apply maponpaths.
            exact (pathsinv0 (CoequalizerArrowEq _ _)).
    apply (bifunctor_rightcomp V).
  }
  etrans. apply assoc.
  apply pathsinv0.
  etrans. apply assoc.
  etrans. apply assoc.
  apply cancel_postcomposition.

  assert (rel' :
      T ⊗^{V}_{l} inv_from_z_iso (rtisp_liso Cisp)
      · αinv^{V}_{_, _, _}
      · free_monoid_coeq_sequence_on I_{V} v ⊗^{V}_{r} A
      = free_monoid_coeq_sequence_on A v
      · inv_from_z_iso (rtisp_riso Cisp)
  ).
  {
    set (rel := rtisp_rel Cisp).

    apply (pre_comp_with_z_iso_is_inj (is_z_iso_leftwhiskering_z_iso V T _ (pr2 (rtisp_liso Cisp)))).
    etrans. apply assoc.
    etrans. apply cancel_postcomposition.
    {
      etrans. apply assoc.
      etrans. apply cancel_postcomposition.
              etrans. exact (pathsinv0 (bifunctor_leftcomp V _ _ _ _ _ _)).
              etrans. apply maponpaths.
                      exact (pr122 (rtisp_liso Cisp)).
              apply (bifunctor_leftid V).
      apply id_left.
    }

    apply pathsinv0.
    apply (post_comp_with_z_iso_is_inj (rtisp_riso Cisp)).
    etrans. apply cancel_postcomposition, assoc.
    etrans. apply assoc'.
    etrans. apply cancel_precomposition.
            exact (pr222 (rtisp_riso Cisp)).
    etrans. apply id_right.

    apply (pre_comp_with_z_iso_is_inj (monoidal_associatorisolaw V _ _ _)).
    etrans. apply assoc.
    apply pathsinv0.
    etrans. apply assoc.
    etrans. apply cancel_postcomposition.
    {
      etrans. apply assoc.
      etrans. apply cancel_postcomposition.
              apply (monoidal_associatorisolaw V).
      apply id_left.
    }
    exact rel.
  }

  apply pathsinv0.
  etrans. apply cancel_precomposition.
          etrans. apply (bifunctor_rightcomp V).
          apply cancel_precomposition.
          apply (bifunctor_rightcomp V).
  etrans. apply assoc.
  etrans. apply cancel_postcomposition.
          exact rel'.
  etrans. apply assoc'.
  apply pathsinv0.
  etrans. apply assoc'.
  etrans. apply assoc'.
  apply cancel_precomposition.
  etrans. apply assoc.
  etrans. apply assoc4.
  etrans. apply cancel_postcomposition, cancel_precomposition.
          apply (whiskerscommutes V (bifunctor_equalwhiskers V)).
  etrans. apply cancel_postcomposition.
          etrans. apply assoc.
          apply cancel_postcomposition.
          apply (monoidal_leftunitorinvnat V).
  etrans. apply assoc'.
  etrans. apply cancel_precomposition.
          apply (monoidal_associatorinvnatright V).
  etrans. apply assoc.
  etrans. apply assoc4.
  etrans. apply cancel_postcomposition, cancel_precomposition.
          apply (monoidal_triangle_identity'_inv V).
  etrans. apply assoc'.
  reflexivity.

Lemma rt_chain_iso_pairs (A : C) (v : vertex nat_graph) :
    rt_chain_iso_pair A v.
Show proof.
  induction v as [|v Cisv].
  - use make_rt_chain_iso_pair.
    * exact (_,, _,, monoidal_leftunitorisolaw V A).
    * exact (_,, is_z_iso_rightwhiskering_z_iso V A _ (_,, monoidal_rightunitorisolaw V T)).
    * abstract (
        etrans; [apply cancel_postcomposition;
                apply (bifunctor_rightid V)|];
        etrans; [apply id_left|];
        apply pathsinv0;
        etrans; [apply id_right|];
        apply (monoidal_triangleidentity V)
      ).
  - set (coeq := next_pair_diagram_coeq (free_monoid_coeq_sequence_on I_{V} v)).
    set (rt_coequalizer := rt_coeq_coequalizer (rt_coeq A) coeq).
    use make_rt_chain_iso_pair.
    * exact (rtisp_riso Cisv).
    * use make_z_iso.
      + use (CoequalizerOut _ rt_coequalizer).
        -- apply (compose (α^{V}_{_, _, _})).
           apply (compose (T ⊗^{V}_{l} (z_iso_mor (rtisp_riso Cisv)))).
           exact (CoequalizerArrow _ (next_pair_diagram_coeq (free_monoid_coeq_sequence_on A v))).
        -- exact (rt_chain_iso_pair_ind_iscoeqout A v Cisv).
      + use CoequalizerOut.
        -- apply (compose (T ⊗^{V}_{l} (z_iso_inv (rtisp_riso Cisv)))).
           apply (compose (αinv^{V}_{_, _, _})).
           exact ((CoequalizerArrow _ (next_pair_diagram_coeq (free_monoid_coeq_sequence_on I_{V} v))) ⊗^{V}_{r} A).
        -- exact (rt_chain_iso_pair_ind_inv_iscoeqout A v Cisv).
      + split.
        -- abstract (
              apply pathsinv0;
              use (CoequalizerEndo_is_identity _ rt_coequalizer);
              etrans; [apply assoc|];
              etrans; [apply cancel_postcomposition;
                      apply (CoequalizerArrowComm _ rt_coequalizer)|];
              etrans; [apply cancel_postcomposition, assoc|];
              etrans; [apply assoc'|];
              etrans; [apply cancel_precomposition;
                      apply (CoequalizerArrowComm)|];
              etrans; [apply assoc|];
              etrans; [apply assoc|];
              etrans; [apply cancel_postcomposition|];
              [
              etrans; [apply assoc4|];
              etrans; [apply cancel_postcomposition, cancel_precomposition;
                      etrans; [exact (pathsinv0 (bifunctor_leftcomp V _ _ _ _ _ _))|];
                      etrans; [apply maponpaths;
                                exact (pr122 (pr12 Cisv))|];
                      apply (bifunctor_leftid V)|];
              etrans; [apply cancel_postcomposition, id_right|];
              apply (monoidal_associatorisolaw V)
              |];
              apply id_left
           ).
        -- abstract (
              apply pathsinv0;
              use (CoequalizerEndo_is_identity);
              etrans; [apply assoc|];
              etrans; [apply cancel_postcomposition;
                      apply (CoequalizerArrowComm)|];
              etrans; [apply cancel_postcomposition, assoc|];
              etrans; [apply assoc'|];
              etrans; [apply cancel_precomposition;
                      apply (CoequalizerArrowComm _ rt_coequalizer)|];
              etrans; [apply assoc|];
              etrans; [apply assoc|];
              etrans; [apply cancel_postcomposition|];
              [
                etrans; [apply assoc4|];
                etrans; [apply cancel_postcomposition, cancel_precomposition;
                        apply (monoidal_associatorisolaw V)|];
                etrans; [apply cancel_postcomposition, id_right|];

                etrans; [exact (pathsinv0 (bifunctor_leftcomp V _ _ _ _ _ _))|];
                etrans; [apply maponpaths;
                        exact (pr222 (rtisp_riso Cisv))|];
                apply (bifunctor_leftid V)
              |];
              apply id_left
           ).
    * abstract (
        etrans; [apply (CoequalizerArrowComm _ rt_coequalizer)|];
        apply assoc
      ).

Lemma rt_chain_isos (A : C) (v : vertex nat_graph) :
    rt_chain_iso_v A v.
Show proof.
  exact (rtisp_liso (rt_chain_iso_pairs A v)).

Lemma rt_chain_isos_commute (A : C) (v : vertex nat_graph) :
    dmor (rightwhisker_chain_with A (free_monoid_coeq_sequence_diagram_on I_{ V})) (idpath (S v))
    · z_iso_mor (rt_chain_isos A (S v)) =
    z_iso_mor (rt_chain_isos A v)
    · dmor (free_monoid_coeq_sequence_diagram_on A) (idpath (S v)).
Show proof.
  apply pathsinv0.

  apply (rt_chain_iso_pair_rel_impl_total_rel).
  exact (rtisp_rel (rt_chain_iso_pairs A v)).

Opaque rt_chain_iso_pairs.

Lemma rt_chain_colim_iso (A : C) :
    z_iso
      (colim (free_monoid_coeq_sequence_rightwhisker_colim_on A I_{V}))
      (colim (free_monoid_coeq_sequence_colim_on A)).
Show proof.
  use make_z_iso.
  - use colimOfArrows.
    * intro v.
      exact (z_iso_mor (rt_chain_isos A v)).
    * abstract (
        intros u v e;
        induction e;
        exact (rt_chain_isos_commute A u)
      ).
  - use colimOfArrows.
    * intro v.
      exact (z_iso_inv (rt_chain_isos A v)).
    * abstract (
        intros u v e;
        induction e;
        apply (post_comp_with_z_iso_is_inj (pr22 (rt_chain_isos A (S u))));
        etrans; [apply assoc'|];
        etrans; [apply cancel_precomposition; exact (pr222 (rt_chain_isos A (S u)))|];
        etrans; [apply id_right|];
        apply (pre_comp_with_z_iso_is_inj (pr22 (rt_chain_isos A u)));
        apply pathsinv0;
        etrans; [apply assoc|];
        etrans; [apply cancel_postcomposition, assoc|];
        etrans; [apply assoc'|];
        etrans; [apply cancel_postcomposition; exact (pr122 (rt_chain_isos A u))|];
        etrans; [apply id_left|];
        exact (rt_chain_isos_commute A u)
      ).
  - abstract (
      split;
        apply pathsinv0;
        apply colim_endo_is_identity;
        intro v; (
          etrans; [apply assoc|];
          etrans; [apply cancel_postcomposition, colimOfArrowsIn|];
          etrans; [apply assoc'|];
          etrans; [apply cancel_precomposition, colimOfArrowsIn|];
          etrans; [apply assoc|]
        ); [
        etrans; [apply cancel_postcomposition; exact (pr122 (rt_chain_isos A v))|];
        apply id_left
        | etrans; [apply cancel_postcomposition; exact (pr222 (rt_chain_isos A v))|];
        apply id_left
      ]
    ).

Lemma Tinf_mul_alg_map_commutes :
    (Mon_alg_map _ (pr2 TinfM)) ⊗^{ V}_{r} Tinf · Tinf_monoid_mul
    = α^{V}_{_, _, _}
    · T ⊗^{ V}_{l} Tinf_monoid_mul · (Mon_alg_map _ (pr2 TinfM)).
Show proof.
  apply (pre_comp_with_z_iso_is_inj (is_inverse_in_precat_inv (monoidal_associatorisolaw V _ _ _))).
  apply pathsinv0.
  etrans. apply assoc.
  etrans. apply cancel_postcomposition, assoc.
  etrans. apply cancel_postcomposition.
          etrans. apply cancel_postcomposition.
                  apply (monoidal_associatorisolaw V).
          apply id_left.

  set (ccTinf := free_monoid_coeq_sequence_colim_on I_{V}).
  set (rt_ccTinf := rt_chain Tinf _ _ _ (isColimCocone_from_ColimCocone ccTinf)).
  set (rt_colim := free_monoid_coeq_sequence_rightwhisker_colim_on Tinf I_{V}).
  set (iso := (_,, isColim_is_z_iso _ rt_colim _ _ rt_ccTinf) : z_iso _ _).
  set (Tiso := (_,, is_z_iso_leftwhiskering_z_iso V T _ (pr2 iso)) : z_iso _ _).
  apply (pre_comp_with_z_iso_is_inj Tiso).

  set (rtiso := rt_chain_colim_iso Tinf).
  set (Trtiso := (_,, is_z_iso_leftwhiskering_z_iso V T _ (pr2 rtiso)) : z_iso _ _).
  apply (pre_comp_with_z_iso_is_inj (z_iso_inv Trtiso)).

  set (Vmon := (_,, V) : monoidal_cat).
  set (isHCC := HT _ (pr2 (free_monoid_coeq_sequence_colim_on Tinf))).
  set (ltisiso := isColim_is_z_iso _ (CL (mapdiagram (monoidal_left_tensor (pr1 T : Vmon)) (free_monoid_coeq_sequence_diagram_on Tinf))) _ _ isHCC).
  set (ltiso := (_,, ltisiso) : z_iso _ _).
  use (pre_comp_with_z_iso_is_inj ltiso).

  use colimArrowUnique'.
  intro v.
  etrans. apply assoc.
  etrans. apply cancel_postcomposition.
          apply (colimArrowCommutes).
  etrans. apply assoc.
  etrans. apply cancel_postcomposition.
  {
    etrans. apply assoc'.
    etrans. apply cancel_postcomposition.
            apply (bifunctor_rightid V).
    etrans. apply id_left.
    etrans. exact (pathsinv0 (bifunctor_leftcomp V _ _ _ _ _ _)).
    etrans. apply maponpaths.
            apply (colimOfArrowsIn).
    apply (bifunctor_leftcomp V).
  }
  etrans. apply assoc'.
  etrans. apply cancel_precomposition.
  {
    etrans. apply assoc.
    etrans. apply cancel_postcomposition.
            etrans. exact (pathsinv0 (bifunctor_leftcomp V _ _ _ _ _ _)).
            apply maponpaths.
            apply (colimArrowCommutes).
    etrans. apply assoc.
    etrans. apply cancel_postcomposition.
            etrans. exact (pathsinv0 (bifunctor_leftcomp V _ _ _ _ _ _)).
            apply maponpaths.
            etrans. apply cancel_postcomposition.
                    etrans. apply cancel_precomposition.
                    apply (bifunctor_leftid V).
                    apply id_right.
            etrans. apply assoc.
            apply cancel_postcomposition.
            exact (Tinf_monoid_mul_iso_precomp_with_colimIn v).
      reflexivity.
  }
  apply pathsinv0.
  etrans. apply assoc.
  etrans. apply cancel_postcomposition.
          apply (colimArrowCommutes).
  etrans. apply assoc.
  etrans. apply cancel_postcomposition.
  {
    etrans. apply assoc'.
    etrans. apply cancel_postcomposition.
            apply (bifunctor_rightid V).
    etrans. apply id_left.
    etrans. exact (pathsinv0 (bifunctor_leftcomp V _ _ _ _ _ _)).
    etrans. apply maponpaths.
            apply (colimOfArrowsIn).
    apply (bifunctor_leftcomp V).
  }
  etrans. apply assoc'.
  apply cancel_precomposition.
  apply pathsinv0.
  etrans. apply cancel_postcomposition.
          apply maponpaths.
          apply (colimArrowCommutes (free_monoid_coeq_sequence_rightwhisker_colim_on Tinf I_{ V})).
  etrans.
  {
    etrans. exact (pathsinv0 (id_left _)).
    etrans. apply cancel_postcomposition.
            exact (pathsinv0 (pr2 (monoidal_associatorisolaw V _ _ _))).
    etrans. apply assoc'.
    apply cancel_precomposition.
    etrans. apply assoc.
    exact (pathsinv0 (pr22 (free_monoid_coeq_sequence_on_Tinf_pd_Tinf_map v))).
  }
  etrans. apply assoc.

  apply pathsinv0.
  etrans.
  {
    etrans. apply assoc.
    etrans. apply cancel_postcomposition.
            etrans. exact (pathsinv0 (bifunctor_leftcomp V _ _ _ _ _ _)).
            apply maponpaths.
            apply (colimArrowCommutes).
    etrans. apply assoc.
    etrans. apply cancel_postcomposition, cancel_postcomposition.
    {
      apply maponpaths.
      etrans. apply cancel_precomposition.
              apply (bifunctor_leftid V).
      apply id_right.
    }
    etrans. apply cancel_postcomposition.
    apply (monoidal_associatorinvnatleftright V).
    etrans. apply assoc'.
    apply cancel_precomposition.
    etrans. apply assoc.
    etrans. apply cancel_postcomposition.
    {
      etrans. exact (pathsinv0 (bifunctor_rightcomp V _ _ _ _ _ _)).
      etrans. apply maponpaths.
              exact (Tinf_colimIn_alg_map_commutes v).
      apply (bifunctor_rightcomp V).
    }
    etrans. apply assoc'.
    apply cancel_precomposition.
    etrans. apply assoc.
    etrans. apply cancel_postcomposition.
            exact (Tinf_monoid_mul_iso_precomp_with_colimIn (S v)).
    apply (colimArrowCommutes (free_monoid_coeq_sequence_rightwhisker_colim_on Tinf I_{ V}) _ _ (S v)).
  }
  apply pathsinv0.
  etrans. apply assoc'.
  reflexivity.

Local Lemma Tinf_mul_assoc_pointwise_associator_mess
    (t s l : C) (f : (l _{V} s) --> s) :
  αinv^{V}_{t _{V} l, s, s}
  · (α^{V}_{t, l, s}
     · t ⊗^{V}_{l} f) ⊗^{V}_{r} s
  · α^{V}_{t, s, s}
  = α^{V}_{t, l, s _{V} s}
  · t ⊗^{V}_{l} (
    αinv^{V}_{l, s, s}
    · f ⊗^{V}_{r} s
  ).
Show proof.
  etrans. apply cancel_postcomposition, cancel_precomposition.
          apply (bifunctor_rightcomp V).
  etrans. apply cancel_postcomposition, assoc.
  apply pathsinv0.
  etrans. apply cancel_precomposition.
          apply (bifunctor_leftcomp V).
  etrans. apply assoc.
  apply pathsinv0.
  etrans. apply assoc'.
  etrans. apply cancel_precomposition.
          exact (pathsinv0 (monoidal_associatornatleftright V _ _ _ _ _)).
  etrans. apply assoc.
  apply cancel_postcomposition.
  apply (pre_comp_with_z_iso_is_inj (monoidal_associatorisolaw V _ _ _)).
  etrans. apply assoc.
  etrans. apply cancel_postcomposition.
          etrans. apply assoc.
          etrans. apply cancel_postcomposition.
                  exact (pr1 (monoidal_associatorisolaw V _ _ _)).
          apply id_left.
  apply pathsinv0.
  etrans. apply assoc.
  set (tassoc := is_z_iso_leftwhiskering_z_iso V t _ (_,, monoidal_associatorisolaw V l s s)).
  apply (post_comp_with_z_iso_is_inj tassoc).
  etrans. apply assoc'.
  etrans. apply cancel_precomposition.
  {
    etrans. exact (pathsinv0 (bifunctor_leftcomp V _ _ _ _ _ _)).
    etrans. apply maponpaths.
            apply (monoidal_associatorisolaw V).
    apply (bifunctor_leftid V).
  }
  etrans. apply id_right.
  apply pathsinv0.
  apply (monoidal_pentagonidentity V).

Lemma Tinf_monoid_assoc_pointwise
    (v : vertex nat_graph) :
  αinv^{V}_{_, _, _}
  · free_monoid_coeq_sequence_diagram_on_Tinf_Tinf_map v ⊗^{V}_{r} Tinf
  · Tinf_monoid_mul
  = pair_diagram_lob (free_monoid_coeq_sequence_on I_{V} v) ⊗^{V}_{l} Tinf_monoid_mul
  · free_monoid_coeq_sequence_diagram_on_Tinf_Tinf_map v.
Show proof.
  induction v as [|v Hv].
  - apply pathsinv0.
    etrans. apply (monoidal_leftunitornat V).
    apply cancel_postcomposition.
    apply pathsinv0.
    etrans. apply cancel_precomposition.
            exact (pathsinv0 (right_whisker_with_lunitor V _ _)).
    etrans. apply assoc.
    etrans. apply cancel_postcomposition.
            exact (pr2 (monoidal_associatorisolaw V _ _ _)).
    apply id_left.
  - induction v as [|v _].
    * etrans. apply assoc'.
      etrans. apply cancel_precomposition.
      {
        etrans. apply cancel_postcomposition.
                apply (bifunctor_rightcomp V).
        etrans. apply assoc'.
        apply cancel_precomposition.
        exact (Tinf_mul_alg_map_commutes).
      }
      etrans. apply assoc.
      etrans. apply assoc.
      apply pathsinv0.
      etrans. apply assoc.
      apply cancel_postcomposition.
      etrans. exact (pathsinv0 (whiskerscommutes V (bifunctor_equalwhiskers V) _ _)).
      apply pathsinv0.
      etrans. apply assoc.
      apply cancel_postcomposition.
      etrans. apply assoc'.
      etrans. apply cancel_precomposition.
              exact (pathsinv0 (monoidal_associatornatright V _ _ _ _ _)).
      etrans. apply assoc.
      etrans. apply cancel_postcomposition.
              apply (monoidal_associatorisolaw V).
      apply id_left.
    * set (coeq := next_pair_diagram_coeq (free_monoid_coeq_sequence_on I_{V} v)).
      set (rt_coequalizer := rt_coeq_coequalizer (rt_coeq (Tinf _{V} Tinf)) coeq).
      apply pathsinv0.
      use (CoequalizerOutUnique' rt_coequalizer).
      etrans.
      {
        etrans. apply assoc.
        etrans. apply cancel_postcomposition.
                apply (whiskerscommutes V (bifunctor_equalwhiskers V)).
        etrans. apply assoc'.
        etrans. apply cancel_precomposition.
                exact (pr22 (free_monoid_coeq_sequence_on_Tinf_pd_Tinf_map (S v))).
        etrans. apply assoc.
        etrans. apply cancel_postcomposition.
        {
          etrans. apply assoc.
          etrans. apply cancel_postcomposition.
                  exact (pathsinv0 (monoidal_associatornatleft V _ _ _ _ _)).
          etrans. apply assoc'.
          apply cancel_precomposition.
          etrans. exact (pathsinv0 (bifunctor_leftcomp V _ _ _ _ _ _)).
          apply maponpaths.
          exact (!Hv).
        }
        reflexivity.
      }
      etrans. apply cancel_postcomposition.
              etrans. apply cancel_precomposition.
                      apply (bifunctor_leftcomp V).
              apply assoc.
      etrans. apply assoc'.

      apply pathsinv0.
      etrans.
      {
        etrans. apply assoc.
        apply cancel_postcomposition.
        etrans. apply assoc.
        etrans. apply cancel_postcomposition.
                apply (monoidal_associatorinvnatright V).
        etrans. apply assoc'.
        apply cancel_precomposition.
        etrans. exact (pathsinv0 (bifunctor_rightcomp V _ _ _ _ _ _)).
        etrans. apply maponpaths.
                exact (pr22 (free_monoid_coeq_sequence_on_Tinf_pd_Tinf_map (S v))).
        apply (bifunctor_rightcomp V).
      }
      etrans. apply cancel_postcomposition, assoc.
      etrans. apply assoc'.
      etrans. apply cancel_precomposition.
              exact Tinf_mul_alg_map_commutes.
      etrans. apply assoc.
      etrans. apply cancel_postcomposition, assoc.
      etrans. apply assoc'.
      apply cancel_postcomposition.
      apply Tinf_mul_assoc_pointwise_associator_mess.

Lemma Tinf_monoid_assoc :
    monoid_laws_assoc V Tinf_monoid_data.
Show proof.
  set (ccTinf := free_monoid_coeq_sequence_colim_on I_{V}).
  set (rt_ccTinf := rt_chain (Tinf _{V} Tinf) _ _ _ (isColimCocone_from_ColimCocone ccTinf)).
  set (rt_colim := free_monoid_coeq_sequence_rightwhisker_colim_on (Tinf _{V} Tinf) I_{V}).
  set (iso := (_,, isColim_is_z_iso _ rt_colim _ _ rt_ccTinf) : z_iso _ _).

  apply (pre_comp_with_z_iso_is_inj (is_inverse_in_precat_inv (monoidal_associatorisolaw V _ _ _))).
  apply (pre_comp_with_z_iso_is_inj iso).

  use colimArrowUnique'.
  intro v.
  etrans. apply assoc.
  etrans. apply cancel_postcomposition.
          apply colimArrowCommutes.
  etrans. apply cancel_precomposition.
  {
    etrans. apply assoc.
    apply cancel_postcomposition.
    etrans. apply assoc.
    etrans. apply cancel_postcomposition.
            apply (monoidal_associatorisolaw V).
    apply id_left.
  }
  etrans. apply cancel_postcomposition.
          etrans. apply cancel_precomposition.
                  apply (bifunctor_leftid V).
          apply id_right.
  etrans. apply assoc.
  etrans. apply cancel_postcomposition.
          apply (whiskerscommutes V (bifunctor_equalwhiskers V)).
  etrans. apply assoc'.
  etrans. apply cancel_precomposition.
          etrans. apply assoc.
          etrans. apply cancel_postcomposition.
                  exact (Tinf_monoid_mul_iso_precomp_with_colimIn v).
          apply (colimArrowCommutes ((free_monoid_coeq_sequence_rightwhisker_colim_on Tinf I_{ V}))).

  apply pathsinv0.
  etrans. apply assoc.
  etrans. apply cancel_postcomposition.
          apply colimArrowCommutes.
  etrans. apply cancel_postcomposition.
  etrans. apply cancel_precomposition.
          apply (bifunctor_leftid V).
  apply id_right.

  etrans. apply assoc.
  etrans. apply cancel_postcomposition.
          apply (monoidal_associatorinvnatright V).
  etrans. apply assoc'.
  etrans. apply cancel_precomposition.
  {
    etrans. apply assoc.
    etrans. apply cancel_postcomposition.
    {
      etrans. exact (pathsinv0 (bifunctor_rightcomp V _ _ _ _ _ _)).
      apply maponpaths.
      etrans. apply assoc.
      etrans. apply cancel_postcomposition.
              exact (Tinf_monoid_mul_iso_precomp_with_colimIn v).

      apply (colimArrowCommutes ((free_monoid_coeq_sequence_rightwhisker_colim_on Tinf I_{ V}))).
    }
    reflexivity.
  }
  etrans. apply assoc.
  exact (Tinf_monoid_assoc_pointwise v).

Definition Tinf_monoid_axioms :
    monoid_laws V Tinf_monoid_data :=
  (Tinf_monoid_unit_left,, Tinf_monoid_unit_right,, Tinf_monoid_assoc).

Definition Tinf_monoid : monoid V Tinf :=
    (_,, Tinf_monoid_axioms).

End Monoid.

End free_monoid_colim.