Library UniMath.ModelCategories.Generated.LNWFSMonoidalStructure
Require Import UniMath.MoreFoundations.All.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.opp_precat.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Monads.Monads.
Require Import UniMath.CategoryTheory.Monads.Comonads.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Total.
Require Import UniMath.CategoryTheory.DisplayedCats.Functors.
Require Import UniMath.CategoryTheory.DisplayedCats.Constructions.
Require Import UniMath.CategoryTheory.DisplayedCats.Examples.Arrow.
Require Import UniMath.CategoryTheory.DisplayedCats.Examples.Three.
Require Import UniMath.ModelCategories.Lifting.
Require Import UniMath.ModelCategories.NWFS.
Require Import UniMath.ModelCategories.Helpers.
Require Import UniMath.ModelCategories.Generated.LNWFSHelpers.
Require Import UniMath.ModelCategories.Generated.FFMonoidalStructure.
Local Open Scope cat.
Local Open Scope morcls.
Section LNWFS_composition.
Require Import UniMath.CategoryTheory.Core.Prelude.
Require Import UniMath.CategoryTheory.Core.Categories.
Require Import UniMath.CategoryTheory.opp_precat.
Require Import UniMath.CategoryTheory.Core.Functors.
Require Import UniMath.CategoryTheory.Core.NaturalTransformations.
Require Import UniMath.CategoryTheory.Monads.Monads.
Require Import UniMath.CategoryTheory.Monads.Comonads.
Require Import UniMath.CategoryTheory.DisplayedCats.Core.
Require Import UniMath.CategoryTheory.DisplayedCats.Total.
Require Import UniMath.CategoryTheory.DisplayedCats.Functors.
Require Import UniMath.CategoryTheory.DisplayedCats.Constructions.
Require Import UniMath.CategoryTheory.DisplayedCats.Examples.Arrow.
Require Import UniMath.CategoryTheory.DisplayedCats.Examples.Three.
Require Import UniMath.ModelCategories.Lifting.
Require Import UniMath.ModelCategories.NWFS.
Require Import UniMath.ModelCategories.Helpers.
Require Import UniMath.ModelCategories.Generated.LNWFSHelpers.
Require Import UniMath.ModelCategories.Generated.FFMonoidalStructure.
Local Open Scope cat.
Local Open Scope morcls.
Section LNWFS_composition.
All the displayed morphisms can be finished with Qed, since the
data is always propositional. For the total category morphisms,
defining it in terms of the displayed morphisms (which are propositional)
is optimal, since then we know the morphism it lies over, which is sufficient.
F ⊗ F' (compose left factors)
we flip the terms in Garner to be closer to · notation
Local Definition left_reduced_lp
(F : Ff C) {f g : arrow C}
(γ : f --> g) : (f --> fact_R F g).
Show proof.
use mors_to_arrow_mor.
- exact (arrow_mor00 γ · fact_L F g).
- exact (arrow_mor11 γ).
- abstract (
etrans; [apply assoc'|];
etrans; [apply cancel_precomposition;
apply (three_comp (fact_functor F g))|];
exact (arrow_mor_comm γ)
).
- exact (arrow_mor00 γ · fact_L F g).
- exact (arrow_mor11 γ).
- abstract (
etrans; [apply assoc'|];
etrans; [apply cancel_precomposition;
apply (three_comp (fact_functor F g))|];
exact (arrow_mor_comm γ)
).
Local Lemma left_reduced_lp_lift
{F : Ff C} (L : lnwfs_over F)
{f g : arrow C} (γ : (fact_L F f) --> g) :
filler (arrow_mor_comm (left_reduced_lp F γ)).
Show proof.
set (Fγ11 := three_mor11 (#(fact_functor F) γ)).
exists (arrow_mor11 (pr1 L f) · Fγ11).
abstract (
split; [
etrans; [apply assoc|];
etrans; [apply cancel_postcomposition;
exact (pathsinv0 (arrow_mor_comm (pr1 L f)))|];
etrans; [apply assoc'|];
etrans; [apply cancel_precomposition;
exact (pr1 (three_mor_comm (#(fact_functor F) γ)))|];
etrans; [apply cancel_postcomposition;
exact (lnwfs_Σ_top_map_id L f)|];
apply id_left
|
etrans; [apply assoc'|];
etrans; [apply cancel_precomposition;
exact (pathsinv0 (pr2 (three_mor_comm (#(fact_functor F) γ))))|];
etrans; [apply assoc|];
etrans; [apply cancel_postcomposition;
exact (lnwfs_Σ_bottom_map_inv L f)|];
apply id_left
]
).
exists (arrow_mor11 (pr1 L f) · Fγ11).
abstract (
split; [
etrans; [apply assoc|];
etrans; [apply cancel_postcomposition;
exact (pathsinv0 (arrow_mor_comm (pr1 L f)))|];
etrans; [apply assoc'|];
etrans; [apply cancel_precomposition;
exact (pr1 (three_mor_comm (#(fact_functor F) γ)))|];
etrans; [apply cancel_postcomposition;
exact (lnwfs_Σ_top_map_id L f)|];
apply id_left
|
etrans; [apply assoc'|];
etrans; [apply cancel_precomposition;
exact (pathsinv0 (pr2 (three_mor_comm (#(fact_functor F) γ))))|];
etrans; [apply assoc|];
etrans; [apply cancel_postcomposition;
exact (lnwfs_Σ_bottom_map_inv L f)|];
apply id_left
]
).
Local Definition LNWFS_lcomp_comp_helper
(F F' : Ff C) (f : arrow C) :=
fact_L F f · fact_L F' (fact_R F f).
Definition LNWFS_lcomp_comul_L_lp
{F : Ff C}
(L : lnwfs_over F)
(F' : Ff C)
(f : arrow C) :
fact_L F f --> LNWFS_lcomp_comp_helper F F' f.
Show proof.
use mors_to_arrow_mor.
- exact (identity _).
- exact (fact_L F' (fact_R F f)).
- abstract (apply id_left).
- exact (identity _).
- exact (fact_L F' (fact_R F f)).
- abstract (apply id_left).
Definition LNWFS_lcomp_comul_L'_lp
{F' F : Ff C}
(L' : lnwfs_over F')
(L : lnwfs_over F)
(f : arrow C) :
fact_L F' (fact_R F f) --> fact_R F (LNWFS_lcomp_comp_helper F F' f).
Show proof.
set (L_lp := LNWFS_lcomp_comul_L_lp L F' f : (fact_L F f --> (LNWFS_lcomp_comp_helper F F' f))).
set (L_lift := left_reduced_lp_lift L L_lp).
use mors_to_arrow_mor.
- exact (pr1 L_lift).
- exact (identity _).
- abstract (
etrans; [exact (pr22 L_lift)|];
apply pathsinv0;
apply id_right
).
set (L_lift := left_reduced_lp_lift L L_lp).
use mors_to_arrow_mor.
- exact (pr1 L_lift).
- exact (identity _).
- abstract (
etrans; [exact (pr22 L_lift)|];
apply pathsinv0;
apply id_right
).
Definition LNWFS_lcomp_comul_data {F' F : Ff C} (L' : lnwfs_over F') (L : lnwfs_over F) :
nat_trans_data (fact_L (F' ⊗ F)) ((fact_L (F' ⊗ F)) ∙ (fact_L (F' ⊗ F))).
Show proof.
intro f.
set (λf := fact_L F f).
set (λ'ρf := fact_L F' (fact_R F f)).
set (comp := LNWFS_lcomp_comp_helper F F' f).
set (λcomp := fact_L F comp).
set (ρcomp := fact_R F comp).
set (L_lp := LNWFS_lcomp_comul_L_lp L F' f : (fact_L F f --> comp)).
set (L_lift := left_reduced_lp_lift L L_lp).
set (L'_lp := LNWFS_lcomp_comul_L'_lp L' L f : (λ'ρf --> ρcomp)).
set (L'_lift := left_reduced_lp_lift L' L'_lp).
use mors_to_arrow_mor.
- exact (identity _).
- exact (pr1 L'_lift).
- abstract (
etrans; [apply id_left|];
apply pathsinv0;
etrans;
[
etrans; [apply assoc'|];
apply cancel_precomposition;
exact (pr12 L'_lift)
|];
etrans;
[
etrans; [apply assoc|];
apply cancel_postcomposition;
exact (pr12 L_lift)
|];
etrans; [apply assoc'|];
etrans; [apply id_left|];
reflexivity
).
set (λf := fact_L F f).
set (λ'ρf := fact_L F' (fact_R F f)).
set (comp := LNWFS_lcomp_comp_helper F F' f).
set (λcomp := fact_L F comp).
set (ρcomp := fact_R F comp).
set (L_lp := LNWFS_lcomp_comul_L_lp L F' f : (fact_L F f --> comp)).
set (L_lift := left_reduced_lp_lift L L_lp).
set (L'_lp := LNWFS_lcomp_comul_L'_lp L' L f : (λ'ρf --> ρcomp)).
set (L'_lift := left_reduced_lp_lift L' L'_lp).
use mors_to_arrow_mor.
- exact (identity _).
- exact (pr1 L'_lift).
- abstract (
etrans; [apply id_left|];
apply pathsinv0;
etrans;
[
etrans; [apply assoc'|];
apply cancel_precomposition;
exact (pr12 L'_lift)
|];
etrans;
[
etrans; [apply assoc|];
apply cancel_postcomposition;
exact (pr12 L_lift)
|];
etrans; [apply assoc'|];
etrans; [apply id_left|];
reflexivity
).
everything used in the construction is natural, so this
"should be trivial". Of course it's not in UniMath, but
we just have to reverse all the naturalities we used.
Lemma LNWFS_lcomp_comul_axioms {F' F : Ff C} (L' : lnwfs_over F') (L : lnwfs_over F) :
is_nat_trans _ _ (LNWFS_lcomp_comul_data L' L).
Show proof.
Definition LNWFS_lcomp_comul {F' F : Ff C} (L' : lnwfs_over F') (L : lnwfs_over F) :
(fact_L (F' ⊗ F)) ⟹ ((fact_L (F' ⊗ F)) ∙ (fact_L (F' ⊗ F))) :=
(_,, LNWFS_lcomp_comul_axioms L' L).
Global Opaque left_reduced_lp.
Global Opaque left_reduced_lp_lift.
Global Opaque LNWFS_lcomp_comul_L_lp.
Global Opaque LNWFS_lcomp_comul_L'_lp.
is_nat_trans _ _ (LNWFS_lcomp_comul_data L' L).
Show proof.
intros f g γ.
use arrow_mor_eq;
[etrans; [apply id_right|]; apply pathsinv0; apply id_left|].
etrans.
{
etrans. apply assoc.
set (L'natργ := nat_trans_ax (pr1 L') _ _ (#(fact_R F) γ)).
set (L'natργ11 := pr2 (pathsdirprodweq (base_paths _ _ L'natργ))).
etrans. apply cancel_postcomposition.
exact L'natργ11.
etrans. apply assoc'.
apply cancel_precomposition.
use (pr1_section_disp_on_morphisms_comp F').
}
apply pathsinv0.
etrans. apply assoc'.
apply cancel_precomposition.
etrans. use (pr1_section_disp_on_morphisms_comp F').
use (section_disp_on_eq_morphisms F'); [|etrans; [apply id_left|]; apply pathsinv0; apply id_right].
apply pathsinv0.
etrans. apply assoc.
etrans. apply cancel_postcomposition.
{
set (Lnatγ := nat_trans_ax (pr1 L) _ _ γ).
set (Lnatγ11 := pr2 (pathsdirprodweq (base_paths _ _ Lnatγ))).
exact (Lnatγ11).
}
etrans. apply assoc'.
apply pathsinv0.
etrans. apply assoc'.
apply cancel_precomposition.
etrans. use (pr1_section_disp_on_morphisms_comp F).
apply pathsinv0.
etrans. use (pr1_section_disp_on_morphisms_comp F).
use (section_disp_on_eq_morphisms F); [etrans; [apply id_right|]; apply pathsinv0; apply id_left|].
apply pathsinv0.
exact (pr1 (three_mor_comm (#(fact_functor F') (#(fact_R F ) γ)))).
use arrow_mor_eq;
[etrans; [apply id_right|]; apply pathsinv0; apply id_left|].
etrans.
{
etrans. apply assoc.
set (L'natργ := nat_trans_ax (pr1 L') _ _ (#(fact_R F) γ)).
set (L'natργ11 := pr2 (pathsdirprodweq (base_paths _ _ L'natργ))).
etrans. apply cancel_postcomposition.
exact L'natργ11.
etrans. apply assoc'.
apply cancel_precomposition.
use (pr1_section_disp_on_morphisms_comp F').
}
apply pathsinv0.
etrans. apply assoc'.
apply cancel_precomposition.
etrans. use (pr1_section_disp_on_morphisms_comp F').
use (section_disp_on_eq_morphisms F'); [|etrans; [apply id_left|]; apply pathsinv0; apply id_right].
apply pathsinv0.
etrans. apply assoc.
etrans. apply cancel_postcomposition.
{
set (Lnatγ := nat_trans_ax (pr1 L) _ _ γ).
set (Lnatγ11 := pr2 (pathsdirprodweq (base_paths _ _ Lnatγ))).
exact (Lnatγ11).
}
etrans. apply assoc'.
apply pathsinv0.
etrans. apply assoc'.
apply cancel_precomposition.
etrans. use (pr1_section_disp_on_morphisms_comp F).
apply pathsinv0.
etrans. use (pr1_section_disp_on_morphisms_comp F).
use (section_disp_on_eq_morphisms F); [etrans; [apply id_right|]; apply pathsinv0; apply id_left|].
apply pathsinv0.
exact (pr1 (three_mor_comm (#(fact_functor F') (#(fact_R F ) γ)))).
Definition LNWFS_lcomp_comul {F' F : Ff C} (L' : lnwfs_over F') (L : lnwfs_over F) :
(fact_L (F' ⊗ F)) ⟹ ((fact_L (F' ⊗ F)) ∙ (fact_L (F' ⊗ F))) :=
(_,, LNWFS_lcomp_comul_axioms L' L).
Global Opaque left_reduced_lp.
Global Opaque left_reduced_lp_lift.
Global Opaque LNWFS_lcomp_comul_L_lp.
Global Opaque LNWFS_lcomp_comul_L'_lp.
This is perhaps the most interesting proof, proving that
the comultiplication is associative on the middle morphisms.
Lemma LNWFS_lcomp_comul_mul_law11 {F' F : Ff C}
(L' : lnwfs_over F') (L : lnwfs_over F) (a : arrow C) :
arrow_mor11 (
(disp_δ (L_monad_data (F' ⊗ F) (LNWFS_lcomp_comul L' L)) a)
· (# (fact_L (F' ⊗ F))
(disp_δ (L_monad_data (F' ⊗ F) (LNWFS_lcomp_comul L' L)) a))
)
=
arrow_mor11 (
(disp_δ (L_monad_data (F' ⊗ F) (LNWFS_lcomp_comul L' L)) a)
· (disp_δ (L_monad_data (F' ⊗ F) (LNWFS_lcomp_comul L' L))
(fact_L (F' ⊗ F) a))
).
Show proof.
Definition LNWFS_lcomp_comul_monad_laws {F' F : Ff C} (L' : lnwfs_over F') (L : lnwfs_over F) :
disp_Comonad_laws (L_monad_data (F' ⊗ F) (LNWFS_lcomp_comul L' L)).
Show proof.
Definition LNWFS_lcomp {F' F : Ff C} (L' : LNWFS C F') (L : LNWFS C F) :
LNWFS C (F' ⊗ F) :=
(LNWFS_lcomp_comul L' L,, LNWFS_lcomp_comul_monad_laws L' L).
Definition LNWFS_tot_lcomp (L' L : total_category (LNWFS C)) :
total_category (LNWFS C) :=
(_,, LNWFS_lcomp (pr2 L') (pr2 L)).
Notation "l L⊗ l'" := (LNWFS_lcomp l l') (at level 50).
Notation "l Ltot⊗ l'" := (LNWFS_tot_lcomp l l') (at level 50).
Definition LNWFS_lcomp_unit_comul_data :
nat_trans_data (fact_L (@Ff_lcomp_unit C)) ((fact_L Ff_lcomp_unit) ∙ (fact_L Ff_lcomp_unit)).
Show proof.
Definition LNWFS_lcomp_unit_comul_axioms :
is_nat_trans _ _ LNWFS_lcomp_unit_comul_data.
Show proof.
Definition LNWFS_lcomp_unit_comul :
(fact_L (@Ff_lcomp_unit C)) ⟹ ((fact_L Ff_lcomp_unit) ∙ (fact_L Ff_lcomp_unit)) :=
(_,, LNWFS_lcomp_unit_comul_axioms).
Definition LNWFS_lcomp_unit_comul_monad_laws :
disp_Comonad_laws (L_monad_data (@Ff_lcomp_unit C) (LNWFS_lcomp_unit_comul)).
Show proof.
Definition LNWFS_lcomp_unit :
LNWFS C (@Ff_lcomp_unit C) :=
(LNWFS_lcomp_unit_comul,, LNWFS_lcomp_unit_comul_monad_laws).
Definition LNWFS_tot_lcomp_unit :
total_category (LNWFS C) :=
(_,, LNWFS_lcomp_unit).
Definition LNWFS_l_id_left {F : Ff C} (L : LNWFS _ F) :
(LNWFS_lcomp_unit L⊗ L) -->[Ff_l_id_left F] L.
Show proof.
Definition LNWFS_tot_l_id_left (L : total_category (LNWFS C)) :
(LNWFS_tot_lcomp_unit Ltot⊗ L) --> L :=
(_,, LNWFS_l_id_left (pr2 L)).
Definition LNWFS_l_id_left_rev {F : Ff C} (L : LNWFS _ F) :
L -->[Ff_l_id_left_rev F] (LNWFS_lcomp_unit L⊗ L).
Show proof.
Definition LNWFS_tot_l_id_left_rev (L : total_category (LNWFS C)) :
L --> (LNWFS_tot_lcomp_unit Ltot⊗ L) :=
(_,, LNWFS_l_id_left_rev (pr2 L)).
Definition LNWFS_l_id_right {F : Ff C} (L : LNWFS _ F) :
(L L⊗ LNWFS_lcomp_unit) -->[Ff_l_id_right F] L.
Show proof.
Definition LNWFS_tot_l_id_right (L : total_category (LNWFS C)) :
(L Ltot⊗ LNWFS_tot_lcomp_unit) --> L :=
(_,, LNWFS_l_id_right (pr2 L)).
Definition LNWFS_l_id_right_rev {F : Ff C} (L : LNWFS _ F) :
L -->[Ff_l_id_right_rev F] (L L⊗ LNWFS_lcomp_unit).
Show proof.
Definition LNWFS_tot_l_id_right_rev (L : total_category (LNWFS C)) :
L --> (L Ltot⊗ LNWFS_tot_lcomp_unit) :=
(_,, LNWFS_l_id_right_rev (pr2 L)).
Definition LNWFS_l_assoc_rev {F F' F'' : Ff C}
(L : LNWFS _ F) (L' : LNWFS _ F') (L'' : LNWFS _ F'') :
(L L⊗ (L' L⊗ L'')) -->[Ff_l_assoc_rev F F' F''] ((L L⊗ L') L⊗ L'').
Show proof.
Definition LNWFS_tot_l_assoc_rev (L L' L'' : total_category (LNWFS C)) :
(L Ltot⊗ (L' Ltot⊗ L'')) --> ((L Ltot⊗ L') Ltot⊗ L'') :=
(_,, LNWFS_l_assoc_rev (pr2 L) (pr2 L') (pr2 L'')).
Definition LNWFS_l_assoc {F F' F'' : Ff C}
(L : LNWFS _ F) (L' : LNWFS _ F') (L'' : LNWFS _ F'') :
((L L⊗ L') L⊗ L'') -->[Ff_l_assoc F F' F''] (L L⊗ (L' L⊗ L'')).
Show proof.
Definition LNWFS_tot_l_assoc (L L' L'' : total_category (LNWFS C)) :
((L Ltot⊗ L') Ltot⊗ L'' ) --> (L Ltot⊗ (L' Ltot⊗ L'')) :=
(_,, LNWFS_l_assoc (pr2 L) (pr2 L') (pr2 L'')).
Definition LNWFS_l_rightwhisker {F G G': Ff C}
{Λ : LNWFS _ G} {Λ' : LNWFS _ G'} {τG : G --> G'}
(τ : Λ -->[τG] Λ') (L : LNWFS _ F) :
(Λ L⊗ L) -->[τG ⊗post F] (Λ' L⊗ L).
Show proof.
Definition LNWFS_tot_l_rightwhisker
{Λ Λ' : total_category (LNWFS C)}
(τ : Λ --> Λ') (L : total_category (LNWFS C)) :
(Λ Ltot⊗ L) --> (Λ' Ltot⊗ L) :=
(_,, LNWFS_l_rightwhisker (pr2 τ) (pr2 L)).
Notation "τ L⊗post l" := (LNWFS_l_rightwhisker τ l) (at level 50).
Notation "τ Ltot⊗post l" := (LNWFS_tot_l_rightwhisker τ l) (at level 50).
Lemma LNWFS_tot_l_rightwhisker_id
(Λ L : total_category (LNWFS C)) :
(identity Λ Ltot⊗post L) = identity _.
Show proof.
Lemma LNWFS_tot_l_rightwhisker_comp
{Λ Λ' Λ'': total_category (LNWFS C)}
(τ : Λ --> Λ') (τ' : Λ' --> Λ'')
(L : total_category (LNWFS C)) :
((τ · τ') Ltot⊗post L) = (τ Ltot⊗post L) · (τ' Ltot⊗post L).
Show proof.
Definition LNWFS_l_leftwhisker {F G G': Ff C}
{Λ : LNWFS _ G} {Λ' : LNWFS _ G'} {τG : G --> G'}
(L : LNWFS _ F) (τ : Λ -->[τG] Λ') :
(L L⊗ Λ) -->[F ⊗pre τG] (L L⊗ Λ').
Show proof.
Definition LNWFS_tot_l_leftwhisker {Λ Λ' : total_category (LNWFS C)}
(L : total_category (LNWFS C)) (τ : Λ --> Λ') :
(L Ltot⊗ Λ) --> (L Ltot⊗ Λ'):=
(_,, LNWFS_l_leftwhisker (pr2 L) (pr2 τ)).
Notation "l L⊗pre τ" := (LNWFS_l_leftwhisker l τ) (at level 50).
Notation "l Ltot⊗pre τ" := (LNWFS_tot_l_leftwhisker l τ) (at level 50).
Lemma LNWFS_tot_l_leftwhisker_id
(L Λ : total_category (LNWFS C)) :
(L Ltot⊗pre (identity Λ)) = identity _.
Show proof.
Lemma LNWFS_tot_l_leftwhisker_comp
{Λ Λ' Λ'': total_category (LNWFS C)}
(L : total_category (LNWFS C))
(τ : Λ --> Λ') (τ' : Λ' --> Λ'') :
(L Ltot⊗pre (τ · τ')) = (L Ltot⊗pre τ) · (L Ltot⊗pre τ').
Show proof.
Definition LNWFS_l_mor_comp {F F' G G' : Ff C}
{τF : F --> F'} {ρG : G --> G'}
{L : LNWFS _ F} {L' : LNWFS _ F'}
{Λ : LNWFS _ G} {Λ' : LNWFS _ G'}
(τ : L -->[τF] L') (ρ : Λ -->[ρG] Λ') :
(L L⊗ Λ) -->[Ff_l_mor_comp τF ρG] (L' L⊗ Λ').
Show proof.
Definition LNWFS_tot_l_mor_comp {L L' Λ Λ' : total_category (LNWFS C)}
(τ : L --> L') (ρ : Λ --> Λ') :
(L Ltot⊗ Λ) --> (L' Ltot⊗ Λ') :=
(_,, LNWFS_l_mor_comp (pr2 τ) (pr2 ρ)).
Definition LNWFS_l_point {F : Ff C} (L : LNWFS _ F) :
LNWFS_lcomp_unit -->[Ff_l_point F] L.
Show proof.
Definition LNWFS_tot_l_point (L : total_category (LNWFS C)) :
LNWFS_tot_lcomp_unit --> L :=
(_,, LNWFS_l_point (pr2 L)).
Lemma LNWFS_tot_mor_eq {L L' : total_category (LNWFS C)}
(τ τ' : L --> L') :
(∏ (f : arrow C), pr1 (pr11 τ f) = pr1 (pr11 τ' f)) ->
τ = τ'.
Show proof.
End LNWFS_composition.
Notation "l L⊗ l'" := (LNWFS_lcomp l l') (at level 50).
Notation "l Ltot⊗ l'" := (LNWFS_tot_lcomp l l') (at level 50).
Notation "l L⊗pre τ" := (LNWFS_l_leftwhisker l τ) (at level 50).
Notation "l Ltot⊗pre τ" := (LNWFS_tot_l_leftwhisker l τ) (at level 50).
Notation "τ L⊗post l" := (LNWFS_l_rightwhisker τ l) (at level 50).
Notation "τ Ltot⊗post l" := (LNWFS_tot_l_rightwhisker τ l) (at level 50).
Require Import UniMath.CategoryTheory.Monoidal.Categories.
Require Import UniMath.CategoryTheory.Monoidal.Displayed.Monoidal.
Require Import UniMath.CategoryTheory.Monoidal.Displayed.TotalMonoidal.
Section LNWFS_monoidal.
Context {C : category}.
Definition LNWFS_disp_tensor_data : disp_tensor (LNWFS C) Ff_monoidal.
Show proof.
Definition LNWFS_disp_monoidal_data : disp_monoidal_data (LNWFS C) Ff_monoidal.
Show proof.
Definition LNWFS_disp_monoidal_laws : disp_monoidal_laws LNWFS_disp_monoidal_data.
Show proof.
Definition LNWFS_monoidal : disp_monoidal (LNWFS C) Ff_monoidal :=
(_,, LNWFS_disp_monoidal_laws).
Definition LNWFS_tot_monoidal : monoidal _ :=
total_monoidal LNWFS_monoidal.
Definition Ff_monoidal : monoidal (Ff C) :=
(_,, Ff_monoidal_laws).
End LNWFS_monoidal.
Require Import UniMath.CategoryTheory.Monads.Monads.
Require Import UniMath.CategoryTheory.Monoidal.CategoriesOfMonoids.
Section LNWFS_monoid_is_NWFS.
Context {C : category}.
Local Definition LNWFSC := total_category (LNWFS C).
Definition LNWFS_tot_monoid_is_NWFS_monoid_data
{L : LNWFSC} (R : monoid (LNWFS_tot_monoidal) L) :
monoid_data Ff_monoidal (pr1 L).
Show proof.
Definition LNWFS_tot_monoid_is_NWFS_monoid_axioms
{L : LNWFSC} (R : monoid (LNWFS_tot_monoidal) L) :
monoid_laws _ (LNWFS_tot_monoid_is_NWFS_monoid_data R).
Show proof.
Definition LNWFS_tot_monoid_projection
{L : LNWFSC} (R : monoid (LNWFS_tot_monoidal) L) :
monoid Ff_monoidal (pr1 L) :=
(_,, LNWFS_tot_monoid_is_NWFS_monoid_axioms R).
Definition LNWFS_tot_monoid_is_NWFS
{L : LNWFSC} (R : monoid (LNWFS_tot_monoidal) L) :
NWFS C (pr1 L).
Show proof.
End LNWFS_monoid_is_NWFS.
(L' : lnwfs_over F') (L : lnwfs_over F) (a : arrow C) :
arrow_mor11 (
(disp_δ (L_monad_data (F' ⊗ F) (LNWFS_lcomp_comul L' L)) a)
· (# (fact_L (F' ⊗ F))
(disp_δ (L_monad_data (F' ⊗ F) (LNWFS_lcomp_comul L' L)) a))
)
=
arrow_mor11 (
(disp_δ (L_monad_data (F' ⊗ F) (LNWFS_lcomp_comul L' L)) a)
· (disp_δ (L_monad_data (F' ⊗ F) (LNWFS_lcomp_comul L' L))
(fact_L (F' ⊗ F) a))
).
Show proof.
set (law3 := @Comonad_law3 _ (L_monad _ _ (pr2 L))).
set (law3' := @Comonad_law3 _ (L_monad _ _ (pr2 L'))).
apply pathsinv0.
etrans. apply assoc'.
etrans. apply cancel_precomposition, assoc.
apply pathsinv0.
etrans. apply assoc'.
etrans. apply cancel_precomposition.
{
apply (pr1_section_disp_on_morphisms_comp F').
}
set (natL'L'_lp := nat_trans_ax (pr1 L') _ _ (LNWFS_lcomp_comul_L'_lp L' L a)).
apply pathsinv0.
etrans. apply cancel_precomposition, cancel_postcomposition.
exact (pr2 (pathsdirprodweq (base_paths _ _ (natL'L'_lp)))).
etrans. apply assoc.
etrans. apply cancel_postcomposition, assoc.
etrans. apply assoc'.
etrans. apply cancel_postcomposition.
exact (pathsinv0 (pr2 (pathsdirprodweq (base_paths _ _ (law3' (fact_R F a)))))).
etrans. apply assoc'.
apply cancel_precomposition.
etrans. apply cancel_precomposition.
apply (pr1_section_disp_on_morphisms_comp F').
etrans. apply (pr1_section_disp_on_morphisms_comp F').
use (section_disp_on_eq_morphisms F').
- etrans. apply assoc.
apply pathsinv0.
etrans. apply assoc'.
apply pathsinv0.
etrans. do 2 apply cancel_postcomposition.
exact (lnwfs_Σ_top_map_id L' (fact_R F a)).
etrans. apply cancel_postcomposition, id_left.
etrans. apply assoc'.
set (natLL_lp := nat_trans_ax (pr1 L) _ _ (LNWFS_lcomp_comul_L_lp L F' a)).
etrans. apply cancel_precomposition.
apply assoc.
etrans. apply cancel_precomposition, cancel_postcomposition.
exact (pr2 (pathsdirprodweq (base_paths _ _ natLL_lp))).
etrans. apply assoc.
etrans. apply cancel_postcomposition, assoc.
etrans. apply assoc'.
etrans. apply cancel_postcomposition.
exact (pathsinv0 (pr2 (pathsdirprodweq (base_paths _ _ (law3 a))))).
etrans. apply assoc'.
apply cancel_precomposition.
etrans. apply cancel_precomposition.
apply (pr1_section_disp_on_morphisms_comp F).
etrans. apply (pr1_section_disp_on_morphisms_comp F).
apply pathsinv0.
etrans. apply (pr1_section_disp_on_morphisms_comp F).
apply (section_disp_on_eq_morphisms F).
*
apply pathsinv0.
etrans. apply cancel_postcomposition.
exact (lnwfs_Σ_top_map_id L a).
apply id_left.
* etrans. apply assoc.
etrans. apply cancel_postcomposition.
{
set (Σ'ρa := pr1 L' (fact_R F a)).
etrans. exact (pathsinv0 (arrow_mor_comm Σ'ρa)).
etrans. apply cancel_postcomposition.
exact (lnwfs_Σ_top_map_id L' (fact_R F a)).
apply id_left.
}
apply pathsinv0.
etrans. apply assoc.
exact (arrow_mor_comm (#(fact_L F') (LNWFS_lcomp_comul_L'_lp L' L a))).
- etrans. apply cancel_precomposition.
apply id_right.
apply pathsinv0.
apply id_left.
set (law3' := @Comonad_law3 _ (L_monad _ _ (pr2 L'))).
apply pathsinv0.
etrans. apply assoc'.
etrans. apply cancel_precomposition, assoc.
apply pathsinv0.
etrans. apply assoc'.
etrans. apply cancel_precomposition.
{
apply (pr1_section_disp_on_morphisms_comp F').
}
set (natL'L'_lp := nat_trans_ax (pr1 L') _ _ (LNWFS_lcomp_comul_L'_lp L' L a)).
apply pathsinv0.
etrans. apply cancel_precomposition, cancel_postcomposition.
exact (pr2 (pathsdirprodweq (base_paths _ _ (natL'L'_lp)))).
etrans. apply assoc.
etrans. apply cancel_postcomposition, assoc.
etrans. apply assoc'.
etrans. apply cancel_postcomposition.
exact (pathsinv0 (pr2 (pathsdirprodweq (base_paths _ _ (law3' (fact_R F a)))))).
etrans. apply assoc'.
apply cancel_precomposition.
etrans. apply cancel_precomposition.
apply (pr1_section_disp_on_morphisms_comp F').
etrans. apply (pr1_section_disp_on_morphisms_comp F').
use (section_disp_on_eq_morphisms F').
- etrans. apply assoc.
apply pathsinv0.
etrans. apply assoc'.
apply pathsinv0.
etrans. do 2 apply cancel_postcomposition.
exact (lnwfs_Σ_top_map_id L' (fact_R F a)).
etrans. apply cancel_postcomposition, id_left.
etrans. apply assoc'.
set (natLL_lp := nat_trans_ax (pr1 L) _ _ (LNWFS_lcomp_comul_L_lp L F' a)).
etrans. apply cancel_precomposition.
apply assoc.
etrans. apply cancel_precomposition, cancel_postcomposition.
exact (pr2 (pathsdirprodweq (base_paths _ _ natLL_lp))).
etrans. apply assoc.
etrans. apply cancel_postcomposition, assoc.
etrans. apply assoc'.
etrans. apply cancel_postcomposition.
exact (pathsinv0 (pr2 (pathsdirprodweq (base_paths _ _ (law3 a))))).
etrans. apply assoc'.
apply cancel_precomposition.
etrans. apply cancel_precomposition.
apply (pr1_section_disp_on_morphisms_comp F).
etrans. apply (pr1_section_disp_on_morphisms_comp F).
apply pathsinv0.
etrans. apply (pr1_section_disp_on_morphisms_comp F).
apply (section_disp_on_eq_morphisms F).
*
apply pathsinv0.
etrans. apply cancel_postcomposition.
exact (lnwfs_Σ_top_map_id L a).
apply id_left.
* etrans. apply assoc.
etrans. apply cancel_postcomposition.
{
set (Σ'ρa := pr1 L' (fact_R F a)).
etrans. exact (pathsinv0 (arrow_mor_comm Σ'ρa)).
etrans. apply cancel_postcomposition.
exact (lnwfs_Σ_top_map_id L' (fact_R F a)).
apply id_left.
}
apply pathsinv0.
etrans. apply assoc.
exact (arrow_mor_comm (#(fact_L F') (LNWFS_lcomp_comul_L'_lp L' L a))).
- etrans. apply cancel_precomposition.
apply id_right.
apply pathsinv0.
apply id_left.
Definition LNWFS_lcomp_comul_monad_laws {F' F : Ff C} (L' : lnwfs_over F') (L : lnwfs_over F) :
disp_Comonad_laws (L_monad_data (F' ⊗ F) (LNWFS_lcomp_comul L' L)).
Show proof.
repeat split; intro a.
- use arrow_mor_eq; [apply id_left|].
etrans. apply assoc'.
apply pathsinv0.
etrans. exact (pathsinv0 (lnwfs_Σ_bottom_map_inv L' (fact_R F a))).
apply cancel_precomposition.
apply pathsinv0.
set (F'L'_lp := #(fact_functor F') (LNWFS_lcomp_comul_L'_lp L' L a)).
etrans. apply (pathsinv0 (pr2 (three_mor_comm F'L'_lp))).
apply id_right.
- use arrow_mor_eq; [apply id_left|].
set (law2 := @Comonad_law2 _ (L_monad _ (pr1 L') (pr2 L'))).
apply pathsinv0.
etrans. exact (pathsinv0 (pr2 (pathsdirprodweq (base_paths _ _ (law2 (fact_R F a)))))).
apply pathsinv0.
etrans. apply assoc'.
apply cancel_precomposition.
etrans. use (pr1_section_disp_on_morphisms_comp F').
use (section_disp_on_eq_morphisms F'); [|apply id_left].
etrans. apply assoc'.
etrans. apply cancel_precomposition.
apply (pr1_section_disp_on_morphisms_comp F).
apply pathsinv0.
set (law2F := @Comonad_law2 _ (L_monad _ _ (pr2 L))).
etrans. exact (pathsinv0 (pr2 (pathsdirprodweq (base_paths _ _ (law2F a))))).
apply cancel_precomposition.
use (section_disp_on_eq_morphisms F); [apply pathsinv0; apply id_left|].
apply pathsinv0.
exact (three_comp (fact_functor F' (fact_R F a))).
- use arrow_mor_eq; [reflexivity|].
exact (LNWFS_lcomp_comul_mul_law11 L' L a).
- use arrow_mor_eq; [apply id_left|].
etrans. apply assoc'.
apply pathsinv0.
etrans. exact (pathsinv0 (lnwfs_Σ_bottom_map_inv L' (fact_R F a))).
apply cancel_precomposition.
apply pathsinv0.
set (F'L'_lp := #(fact_functor F') (LNWFS_lcomp_comul_L'_lp L' L a)).
etrans. apply (pathsinv0 (pr2 (three_mor_comm F'L'_lp))).
apply id_right.
- use arrow_mor_eq; [apply id_left|].
set (law2 := @Comonad_law2 _ (L_monad _ (pr1 L') (pr2 L'))).
apply pathsinv0.
etrans. exact (pathsinv0 (pr2 (pathsdirprodweq (base_paths _ _ (law2 (fact_R F a)))))).
apply pathsinv0.
etrans. apply assoc'.
apply cancel_precomposition.
etrans. use (pr1_section_disp_on_morphisms_comp F').
use (section_disp_on_eq_morphisms F'); [|apply id_left].
etrans. apply assoc'.
etrans. apply cancel_precomposition.
apply (pr1_section_disp_on_morphisms_comp F).
apply pathsinv0.
set (law2F := @Comonad_law2 _ (L_monad _ _ (pr2 L))).
etrans. exact (pathsinv0 (pr2 (pathsdirprodweq (base_paths _ _ (law2F a))))).
apply cancel_precomposition.
use (section_disp_on_eq_morphisms F); [apply pathsinv0; apply id_left|].
apply pathsinv0.
exact (three_comp (fact_functor F' (fact_R F a))).
- use arrow_mor_eq; [reflexivity|].
exact (LNWFS_lcomp_comul_mul_law11 L' L a).
Definition LNWFS_lcomp {F' F : Ff C} (L' : LNWFS C F') (L : LNWFS C F) :
LNWFS C (F' ⊗ F) :=
(LNWFS_lcomp_comul L' L,, LNWFS_lcomp_comul_monad_laws L' L).
Definition LNWFS_tot_lcomp (L' L : total_category (LNWFS C)) :
total_category (LNWFS C) :=
(_,, LNWFS_lcomp (pr2 L') (pr2 L)).
Notation "l L⊗ l'" := (LNWFS_lcomp l l') (at level 50).
Notation "l Ltot⊗ l'" := (LNWFS_tot_lcomp l l') (at level 50).
Definition LNWFS_lcomp_unit_comul_data :
nat_trans_data (fact_L (@Ff_lcomp_unit C)) ((fact_L Ff_lcomp_unit) ∙ (fact_L Ff_lcomp_unit)).
Show proof.
Definition LNWFS_lcomp_unit_comul_axioms :
is_nat_trans _ _ LNWFS_lcomp_unit_comul_data.
Show proof.
intros f g γ.
use arrow_mor_eq.
- etrans. apply id_right.
apply pathsinv0.
apply id_left.
- etrans. apply id_right.
apply pathsinv0.
apply id_left.
use arrow_mor_eq.
- etrans. apply id_right.
apply pathsinv0.
apply id_left.
- etrans. apply id_right.
apply pathsinv0.
apply id_left.
Definition LNWFS_lcomp_unit_comul :
(fact_L (@Ff_lcomp_unit C)) ⟹ ((fact_L Ff_lcomp_unit) ∙ (fact_L Ff_lcomp_unit)) :=
(_,, LNWFS_lcomp_unit_comul_axioms).
Definition LNWFS_lcomp_unit_comul_monad_laws :
disp_Comonad_laws (L_monad_data (@Ff_lcomp_unit C) (LNWFS_lcomp_unit_comul)).
Show proof.
repeat split;
(intro f;
apply subtypePath; [intro; apply homset_property|]);
apply pathsdirprod; try now rewrite id_left.
- reflexivity.
- reflexivity.
(intro f;
apply subtypePath; [intro; apply homset_property|]);
apply pathsdirprod; try now rewrite id_left.
- reflexivity.
- reflexivity.
Definition LNWFS_lcomp_unit :
LNWFS C (@Ff_lcomp_unit C) :=
(LNWFS_lcomp_unit_comul,, LNWFS_lcomp_unit_comul_monad_laws).
Definition LNWFS_tot_lcomp_unit :
total_category (LNWFS C) :=
(_,, LNWFS_lcomp_unit).
Definition LNWFS_l_id_left {F : Ff C} (L : LNWFS _ F) :
(LNWFS_lcomp_unit L⊗ L) -->[Ff_l_id_left F] L.
Show proof.
split; (intro; use arrow_mor_eq).
- etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
etrans. apply id_right.
exact (pathsinv0 (lnwfs_Σ_top_map_id L a)).
- etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
etrans. apply cancel_postcomposition.
apply id_left.
etrans. apply assoc'.
etrans. apply cancel_precomposition.
apply (pr1_section_disp_on_morphisms_comp F).
etrans. apply cancel_precomposition.
{
etrans. use (section_disp_on_eq_morphisms F (γ' := identity _)); apply id_left.
apply maponpaths.
exact (section_disp_id F _).
}
apply id_right.
- apply id_left.
- apply id_left.
- etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
etrans. apply id_right.
exact (pathsinv0 (lnwfs_Σ_top_map_id L a)).
- etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
etrans. apply cancel_postcomposition.
apply id_left.
etrans. apply assoc'.
etrans. apply cancel_precomposition.
apply (pr1_section_disp_on_morphisms_comp F).
etrans. apply cancel_precomposition.
{
etrans. use (section_disp_on_eq_morphisms F (γ' := identity _)); apply id_left.
apply maponpaths.
exact (section_disp_id F _).
}
apply id_right.
- apply id_left.
- apply id_left.
Definition LNWFS_tot_l_id_left (L : total_category (LNWFS C)) :
(LNWFS_tot_lcomp_unit Ltot⊗ L) --> L :=
(_,, LNWFS_l_id_left (pr2 L)).
Definition LNWFS_l_id_left_rev {F : Ff C} (L : LNWFS _ F) :
L -->[Ff_l_id_left_rev F] (LNWFS_lcomp_unit L⊗ L).
Show proof.
split; (intro; use arrow_mor_eq).
- etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
etrans. apply id_right.
exact (lnwfs_Σ_top_map_id L a).
- etrans. apply id_left.
etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
apply cancel_precomposition.
use (section_disp_on_eq_morphisms F); reflexivity.
- apply id_left.
- apply id_left.
- etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
etrans. apply id_right.
exact (lnwfs_Σ_top_map_id L a).
- etrans. apply id_left.
etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
apply cancel_precomposition.
use (section_disp_on_eq_morphisms F); reflexivity.
- apply id_left.
- apply id_left.
Definition LNWFS_tot_l_id_left_rev (L : total_category (LNWFS C)) :
L --> (LNWFS_tot_lcomp_unit Ltot⊗ L) :=
(_,, LNWFS_l_id_left_rev (pr2 L)).
Definition LNWFS_l_id_right {F : Ff C} (L : LNWFS _ F) :
(L L⊗ LNWFS_lcomp_unit) -->[Ff_l_id_right F] L.
Show proof.
split; (intro; use arrow_mor_eq).
- etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
etrans. apply id_right.
exact (pathsinv0 (lnwfs_Σ_top_map_id L a)).
- etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
etrans. apply assoc'.
etrans. apply cancel_precomposition.
{
etrans. use (pr1_section_disp_on_morphisms_comp F).
etrans. use (section_disp_on_eq_morphisms F (γ' := identity _)).
- etrans. apply id_right.
apply id_right.
- apply id_right.
- apply maponpaths.
exact (section_disp_id F _).
}
apply id_right.
- apply id_left.
- apply id_left.
- etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
etrans. apply id_right.
exact (pathsinv0 (lnwfs_Σ_top_map_id L a)).
- etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
etrans. apply assoc'.
etrans. apply cancel_precomposition.
{
etrans. use (pr1_section_disp_on_morphisms_comp F).
etrans. use (section_disp_on_eq_morphisms F (γ' := identity _)).
- etrans. apply id_right.
apply id_right.
- apply id_right.
- apply maponpaths.
exact (section_disp_id F _).
}
apply id_right.
- apply id_left.
- apply id_left.
Definition LNWFS_tot_l_id_right (L : total_category (LNWFS C)) :
(L Ltot⊗ LNWFS_tot_lcomp_unit) --> L :=
(_,, LNWFS_l_id_right (pr2 L)).
Definition LNWFS_l_id_right_rev {F : Ff C} (L : LNWFS _ F) :
L -->[Ff_l_id_right_rev F] (L L⊗ LNWFS_lcomp_unit).
Show proof.
split; (intro; use arrow_mor_eq).
- etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
etrans. apply id_right.
exact (lnwfs_Σ_top_map_id L a).
- etrans. apply id_left.
apply pathsinv0.
etrans. apply assoc'.
apply cancel_precomposition.
etrans. apply id_right.
apply pathsinv0.
use (section_disp_on_eq_morphisms F).
* apply id_left.
* reflexivity.
- apply id_left.
- apply id_left.
- etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
etrans. apply id_right.
exact (lnwfs_Σ_top_map_id L a).
- etrans. apply id_left.
apply pathsinv0.
etrans. apply assoc'.
apply cancel_precomposition.
etrans. apply id_right.
apply pathsinv0.
use (section_disp_on_eq_morphisms F).
* apply id_left.
* reflexivity.
- apply id_left.
- apply id_left.
Definition LNWFS_tot_l_id_right_rev (L : total_category (LNWFS C)) :
L --> (L Ltot⊗ LNWFS_tot_lcomp_unit) :=
(_,, LNWFS_l_id_right_rev (pr2 L)).
Definition LNWFS_l_assoc_rev {F F' F'' : Ff C}
(L : LNWFS _ F) (L' : LNWFS _ F') (L'' : LNWFS _ F'') :
(L L⊗ (L' L⊗ L'')) -->[Ff_l_assoc_rev F F' F''] ((L L⊗ L') L⊗ L'').
Show proof.
split; (intro; use arrow_mor_eq).
- etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
apply id_left.
- etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
etrans. apply assoc'.
etrans. apply cancel_precomposition.
apply (pr1_section_disp_on_morphisms_comp F).
apply pathsinv0.
etrans. apply assoc'.
apply cancel_precomposition.
etrans. apply (pr1_section_disp_on_morphisms_comp F).
use (section_disp_on_eq_morphisms F).
* etrans. apply assoc'.
apply pathsinv0.
etrans. apply assoc'.
etrans. apply assoc'.
apply cancel_precomposition.
etrans. apply cancel_precomposition.
apply (pr1_section_disp_on_morphisms_comp F').
etrans. apply (pr1_section_disp_on_morphisms_comp F').
apply pathsinv0.
etrans. apply (pr1_section_disp_on_morphisms_comp F').
apply (section_disp_on_eq_morphisms F').
+ etrans. apply id_left.
apply pathsinv0.
etrans. apply assoc'.
apply cancel_precomposition.
etrans. apply cancel_precomposition.
apply (pr1_section_disp_on_morphisms_comp F'').
etrans. apply (pr1_section_disp_on_morphisms_comp F'').
apply (section_disp_on_eq_morphisms F'').
-- etrans. apply id_left.
apply id_left.
-- apply cancel_precomposition.
apply id_right.
+ etrans. apply id_right.
apply pathsinv0.
etrans. apply cancel_precomposition.
apply id_right.
apply id_left.
* etrans. apply id_right.
apply pathsinv0.
apply id_left.
- apply id_left.
- apply id_left.
- etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
apply id_left.
- etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
etrans. apply assoc'.
etrans. apply cancel_precomposition.
apply (pr1_section_disp_on_morphisms_comp F).
apply pathsinv0.
etrans. apply assoc'.
apply cancel_precomposition.
etrans. apply (pr1_section_disp_on_morphisms_comp F).
use (section_disp_on_eq_morphisms F).
* etrans. apply assoc'.
apply pathsinv0.
etrans. apply assoc'.
etrans. apply assoc'.
apply cancel_precomposition.
etrans. apply cancel_precomposition.
apply (pr1_section_disp_on_morphisms_comp F').
etrans. apply (pr1_section_disp_on_morphisms_comp F').
apply pathsinv0.
etrans. apply (pr1_section_disp_on_morphisms_comp F').
apply (section_disp_on_eq_morphisms F').
+ etrans. apply id_left.
apply pathsinv0.
etrans. apply assoc'.
apply cancel_precomposition.
etrans. apply cancel_precomposition.
apply (pr1_section_disp_on_morphisms_comp F'').
etrans. apply (pr1_section_disp_on_morphisms_comp F'').
apply (section_disp_on_eq_morphisms F'').
-- etrans. apply id_left.
apply id_left.
-- apply cancel_precomposition.
apply id_right.
+ etrans. apply id_right.
apply pathsinv0.
etrans. apply cancel_precomposition.
apply id_right.
apply id_left.
* etrans. apply id_right.
apply pathsinv0.
apply id_left.
- apply id_left.
- apply id_left.
Definition LNWFS_tot_l_assoc_rev (L L' L'' : total_category (LNWFS C)) :
(L Ltot⊗ (L' Ltot⊗ L'')) --> ((L Ltot⊗ L') Ltot⊗ L'') :=
(_,, LNWFS_l_assoc_rev (pr2 L) (pr2 L') (pr2 L'')).
Definition LNWFS_l_assoc {F F' F'' : Ff C}
(L : LNWFS _ F) (L' : LNWFS _ F') (L'' : LNWFS _ F'') :
((L L⊗ L') L⊗ L'') -->[Ff_l_assoc F F' F''] (L L⊗ (L' L⊗ L'')).
Show proof.
split; (intro; use arrow_mor_eq).
- etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
apply id_left.
- etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
etrans. apply assoc'.
etrans. apply cancel_precomposition.
apply (pr1_section_disp_on_morphisms_comp F).
etrans. apply assoc'.
apply cancel_precomposition.
etrans. apply (pr1_section_disp_on_morphisms_comp F).
use (section_disp_on_eq_morphisms F).
* etrans. apply assoc'.
apply pathsinv0.
etrans. apply assoc'.
apply cancel_precomposition.
etrans. apply (pr1_section_disp_on_morphisms_comp F').
apply pathsinv0.
etrans. apply cancel_precomposition.
apply (pr1_section_disp_on_morphisms_comp F').
etrans. apply (pr1_section_disp_on_morphisms_comp F').
apply (section_disp_on_eq_morphisms F').
+ etrans. apply assoc.
etrans. apply assoc'.
etrans. apply id_left.
etrans. apply assoc'.
apply pathsinv0.
etrans. apply assoc'.
apply cancel_precomposition.
etrans. apply (pr1_section_disp_on_morphisms_comp F'').
apply pathsinv0.
etrans. apply (pr1_section_disp_on_morphisms_comp F'').
apply (section_disp_on_eq_morphisms F''); [reflexivity|].
etrans. apply assoc'.
apply pathsinv0.
apply cancel_precomposition.
apply pathsinv0.
apply id_right.
+ etrans. apply cancel_precomposition.
apply id_right.
etrans. apply id_right.
apply pathsinv0.
apply id_left.
* etrans. apply assoc.
etrans. apply id_right.
apply id_right.
- apply id_left.
- apply id_left.
- etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
apply id_left.
- etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
etrans. apply assoc'.
etrans. apply cancel_precomposition.
apply (pr1_section_disp_on_morphisms_comp F).
etrans. apply assoc'.
apply cancel_precomposition.
etrans. apply (pr1_section_disp_on_morphisms_comp F).
use (section_disp_on_eq_morphisms F).
* etrans. apply assoc'.
apply pathsinv0.
etrans. apply assoc'.
apply cancel_precomposition.
etrans. apply (pr1_section_disp_on_morphisms_comp F').
apply pathsinv0.
etrans. apply cancel_precomposition.
apply (pr1_section_disp_on_morphisms_comp F').
etrans. apply (pr1_section_disp_on_morphisms_comp F').
apply (section_disp_on_eq_morphisms F').
+ etrans. apply assoc.
etrans. apply assoc'.
etrans. apply id_left.
etrans. apply assoc'.
apply pathsinv0.
etrans. apply assoc'.
apply cancel_precomposition.
etrans. apply (pr1_section_disp_on_morphisms_comp F'').
apply pathsinv0.
etrans. apply (pr1_section_disp_on_morphisms_comp F'').
apply (section_disp_on_eq_morphisms F''); [reflexivity|].
etrans. apply assoc'.
apply pathsinv0.
apply cancel_precomposition.
apply pathsinv0.
apply id_right.
+ etrans. apply cancel_precomposition.
apply id_right.
etrans. apply id_right.
apply pathsinv0.
apply id_left.
* etrans. apply assoc.
etrans. apply id_right.
apply id_right.
- apply id_left.
- apply id_left.
Definition LNWFS_tot_l_assoc (L L' L'' : total_category (LNWFS C)) :
((L Ltot⊗ L') Ltot⊗ L'' ) --> (L Ltot⊗ (L' Ltot⊗ L'')) :=
(_,, LNWFS_l_assoc (pr2 L) (pr2 L') (pr2 L'')).
Definition LNWFS_l_rightwhisker {F G G': Ff C}
{Λ : LNWFS _ G} {Λ' : LNWFS _ G'} {τG : G --> G'}
(τ : Λ -->[τG] Λ') (L : LNWFS _ F) :
(Λ L⊗ L) -->[τG ⊗post F] (Λ' L⊗ L).
Show proof.
split; (intro; use arrow_mor_eq).
- etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
apply id_right.
- etrans.
{
etrans. apply assoc.
apply cancel_postcomposition.
exact (pr2 (pathsdirprodweq (base_paths _ _ (pr1 τ (fact_R F a))))).
}
etrans. apply assoc'.
etrans. apply assoc'.
apply pathsinv0.
etrans. apply assoc'.
etrans. apply assoc'.
apply cancel_precomposition.
etrans. apply assoc.
etrans. apply cancel_postcomposition.
apply (pr1_section_disp_on_morphisms_comp G).
apply pathsinv0.
etrans. apply cancel_precomposition.
{
set (τGnat := pr2 τG).
exact (pathsinv0 (base_paths _ _ (τGnat _ _ (LNWFS_lcomp_comul_L'_lp Λ' L a)))).
}
etrans. apply cancel_precomposition.
use (pr1_transportf_const).
etrans. apply assoc.
etrans. apply cancel_postcomposition.
apply (pr1_section_disp_on_morphisms_comp G).
apply cancel_postcomposition.
apply (section_disp_on_eq_morphisms G).
* etrans. apply id_left.
apply pathsinv0.
etrans. apply assoc'.
apply cancel_precomposition.
etrans. apply (pr1_section_disp_on_morphisms_comp F).
apply (section_disp_on_eq_morphisms F).
+ apply id_left.
+ etrans. exact (pr1 (three_mor_comm (section_nat_trans τG (fact_R F a)))).
apply id_left.
* etrans. apply id_right.
apply pathsinv0.
apply id_left.
- apply id_left.
- etrans. exact (pathsinv0 (pr2 (three_mor_comm (section_nat_trans τG (fact_R F a))))).
apply id_right.
- etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
apply id_right.
- etrans.
{
etrans. apply assoc.
apply cancel_postcomposition.
exact (pr2 (pathsdirprodweq (base_paths _ _ (pr1 τ (fact_R F a))))).
}
etrans. apply assoc'.
etrans. apply assoc'.
apply pathsinv0.
etrans. apply assoc'.
etrans. apply assoc'.
apply cancel_precomposition.
etrans. apply assoc.
etrans. apply cancel_postcomposition.
apply (pr1_section_disp_on_morphisms_comp G).
apply pathsinv0.
etrans. apply cancel_precomposition.
{
set (τGnat := pr2 τG).
exact (pathsinv0 (base_paths _ _ (τGnat _ _ (LNWFS_lcomp_comul_L'_lp Λ' L a)))).
}
etrans. apply cancel_precomposition.
use (pr1_transportf_const).
etrans. apply assoc.
etrans. apply cancel_postcomposition.
apply (pr1_section_disp_on_morphisms_comp G).
apply cancel_postcomposition.
apply (section_disp_on_eq_morphisms G).
* etrans. apply id_left.
apply pathsinv0.
etrans. apply assoc'.
apply cancel_precomposition.
etrans. apply (pr1_section_disp_on_morphisms_comp F).
apply (section_disp_on_eq_morphisms F).
+ apply id_left.
+ etrans. exact (pr1 (three_mor_comm (section_nat_trans τG (fact_R F a)))).
apply id_left.
* etrans. apply id_right.
apply pathsinv0.
apply id_left.
- apply id_left.
- etrans. exact (pathsinv0 (pr2 (three_mor_comm (section_nat_trans τG (fact_R F a))))).
apply id_right.
Definition LNWFS_tot_l_rightwhisker
{Λ Λ' : total_category (LNWFS C)}
(τ : Λ --> Λ') (L : total_category (LNWFS C)) :
(Λ Ltot⊗ L) --> (Λ' Ltot⊗ L) :=
(_,, LNWFS_l_rightwhisker (pr2 τ) (pr2 L)).
Notation "τ L⊗post l" := (LNWFS_l_rightwhisker τ l) (at level 50).
Notation "τ Ltot⊗post l" := (LNWFS_tot_l_rightwhisker τ l) (at level 50).
Lemma LNWFS_tot_l_rightwhisker_id
(Λ L : total_category (LNWFS C)) :
(identity Λ Ltot⊗post L) = identity _.
Show proof.
apply subtypePath; [intro; apply isaprop_lnwfs_mor_axioms|].
etrans. use Ff_l_rightwhisker_id.
reflexivity.
etrans. use Ff_l_rightwhisker_id.
reflexivity.
Lemma LNWFS_tot_l_rightwhisker_comp
{Λ Λ' Λ'': total_category (LNWFS C)}
(τ : Λ --> Λ') (τ' : Λ' --> Λ'')
(L : total_category (LNWFS C)) :
((τ · τ') Ltot⊗post L) = (τ Ltot⊗post L) · (τ' Ltot⊗post L).
Show proof.
apply subtypePath; [intro; apply isaprop_lnwfs_mor_axioms|].
etrans. use Ff_l_rightwhisker_comp.
reflexivity.
etrans. use Ff_l_rightwhisker_comp.
reflexivity.
Definition LNWFS_l_leftwhisker {F G G': Ff C}
{Λ : LNWFS _ G} {Λ' : LNWFS _ G'} {τG : G --> G'}
(L : LNWFS _ F) (τ : Λ -->[τG] Λ') :
(L L⊗ Λ) -->[F ⊗pre τG] (L L⊗ Λ').
Show proof.
split; (intro; use arrow_mor_eq).
- etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
apply id_right.
- apply pathsinv0.
etrans. apply assoc'.
etrans.
{
etrans. apply cancel_precomposition.
use (pr1_section_disp_on_morphisms_comp F).
etrans. apply assoc'.
apply cancel_precomposition.
use (pr1_section_disp_on_morphisms_comp F).
}
set (mor := three_mor_mor12 (section_nat_trans τG a) : fact_R G a --> fact_R G' a).
apply pathsinv0.
etrans. apply assoc.
set (Lnatmor := nat_trans_ax (pr1 L) _ _ mor).
set (Lnatmor11 := pr2 (pathsdirprodweq (base_paths _ _ Lnatmor))).
etrans. apply cancel_postcomposition.
exact (Lnatmor11).
etrans. apply assoc'.
apply cancel_precomposition.
clear Lnatmor Lnatmor11.
etrans. apply (pr1_section_disp_on_morphisms_comp F).
use section_disp_on_eq_morphisms.
*
etrans. apply assoc.
etrans. apply cancel_postcomposition.
exact (pr2 (pathsdirprodweq (base_paths _ _ (pr1 τ a)))).
etrans. apply assoc'.
etrans. apply assoc'.
apply pathsinv0.
etrans. apply assoc'.
apply cancel_precomposition.
set (τGnat := base_paths _ _ (pr2 τG _ _ (LNWFS_lcomp_comul_L_lp Λ' F a))).
apply pathsinv0.
etrans. apply cancel_precomposition.
exact (pathsinv0 τGnat).
etrans. apply cancel_precomposition.
use pr1_transportf_const.
etrans. apply assoc.
etrans. apply cancel_postcomposition.
apply (pr1_section_disp_on_morphisms_comp G).
apply pathsinv0.
etrans. apply assoc.
etrans. apply cancel_postcomposition.
apply (pr1_section_disp_on_morphisms_comp G).
apply cancel_postcomposition.
use (section_disp_on_eq_morphisms G).
+ reflexivity.
+
set (FτGa := #(fact_functor F) (three_mor_mor12 (section_nat_trans τG a))).
exact (pr1 (three_mor_comm FτGa)).
* etrans. apply id_right.
apply pathsinv0.
etrans. apply id_left.
apply id_right.
- apply id_left.
- set (FτGa := #(fact_functor F) (three_mor_mor12 (section_nat_trans τG a))).
etrans. apply (pathsinv0 (pr2 (three_mor_comm FτGa))).
apply id_right.
- etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
apply id_right.
- apply pathsinv0.
etrans. apply assoc'.
etrans.
{
etrans. apply cancel_precomposition.
use (pr1_section_disp_on_morphisms_comp F).
etrans. apply assoc'.
apply cancel_precomposition.
use (pr1_section_disp_on_morphisms_comp F).
}
set (mor := three_mor_mor12 (section_nat_trans τG a) : fact_R G a --> fact_R G' a).
apply pathsinv0.
etrans. apply assoc.
set (Lnatmor := nat_trans_ax (pr1 L) _ _ mor).
set (Lnatmor11 := pr2 (pathsdirprodweq (base_paths _ _ Lnatmor))).
etrans. apply cancel_postcomposition.
exact (Lnatmor11).
etrans. apply assoc'.
apply cancel_precomposition.
clear Lnatmor Lnatmor11.
etrans. apply (pr1_section_disp_on_morphisms_comp F).
use section_disp_on_eq_morphisms.
*
etrans. apply assoc.
etrans. apply cancel_postcomposition.
exact (pr2 (pathsdirprodweq (base_paths _ _ (pr1 τ a)))).
etrans. apply assoc'.
etrans. apply assoc'.
apply pathsinv0.
etrans. apply assoc'.
apply cancel_precomposition.
set (τGnat := base_paths _ _ (pr2 τG _ _ (LNWFS_lcomp_comul_L_lp Λ' F a))).
apply pathsinv0.
etrans. apply cancel_precomposition.
exact (pathsinv0 τGnat).
etrans. apply cancel_precomposition.
use pr1_transportf_const.
etrans. apply assoc.
etrans. apply cancel_postcomposition.
apply (pr1_section_disp_on_morphisms_comp G).
apply pathsinv0.
etrans. apply assoc.
etrans. apply cancel_postcomposition.
apply (pr1_section_disp_on_morphisms_comp G).
apply cancel_postcomposition.
use (section_disp_on_eq_morphisms G).
+ reflexivity.
+
set (FτGa := #(fact_functor F) (three_mor_mor12 (section_nat_trans τG a))).
exact (pr1 (three_mor_comm FτGa)).
* etrans. apply id_right.
apply pathsinv0.
etrans. apply id_left.
apply id_right.
- apply id_left.
- set (FτGa := #(fact_functor F) (three_mor_mor12 (section_nat_trans τG a))).
etrans. apply (pathsinv0 (pr2 (three_mor_comm FτGa))).
apply id_right.
Definition LNWFS_tot_l_leftwhisker {Λ Λ' : total_category (LNWFS C)}
(L : total_category (LNWFS C)) (τ : Λ --> Λ') :
(L Ltot⊗ Λ) --> (L Ltot⊗ Λ'):=
(_,, LNWFS_l_leftwhisker (pr2 L) (pr2 τ)).
Notation "l L⊗pre τ" := (LNWFS_l_leftwhisker l τ) (at level 50).
Notation "l Ltot⊗pre τ" := (LNWFS_tot_l_leftwhisker l τ) (at level 50).
Lemma LNWFS_tot_l_leftwhisker_id
(L Λ : total_category (LNWFS C)) :
(L Ltot⊗pre (identity Λ)) = identity _.
Show proof.
apply subtypePath; [intro; apply isaprop_lnwfs_mor_axioms|].
etrans. use Ff_l_leftwhisker_id.
reflexivity.
etrans. use Ff_l_leftwhisker_id.
reflexivity.
Lemma LNWFS_tot_l_leftwhisker_comp
{Λ Λ' Λ'': total_category (LNWFS C)}
(L : total_category (LNWFS C))
(τ : Λ --> Λ') (τ' : Λ' --> Λ'') :
(L Ltot⊗pre (τ · τ')) = (L Ltot⊗pre τ) · (L Ltot⊗pre τ').
Show proof.
apply subtypePath; [intro; apply isaprop_lnwfs_mor_axioms|].
etrans. use Ff_l_leftwhisker_comp.
reflexivity.
etrans. use Ff_l_leftwhisker_comp.
reflexivity.
Definition LNWFS_l_mor_comp {F F' G G' : Ff C}
{τF : F --> F'} {ρG : G --> G'}
{L : LNWFS _ F} {L' : LNWFS _ F'}
{Λ : LNWFS _ G} {Λ' : LNWFS _ G'}
(τ : L -->[τF] L') (ρ : Λ -->[ρG] Λ') :
(L L⊗ Λ) -->[Ff_l_mor_comp τF ρG] (L' L⊗ Λ').
Show proof.
Definition LNWFS_tot_l_mor_comp {L L' Λ Λ' : total_category (LNWFS C)}
(τ : L --> L') (ρ : Λ --> Λ') :
(L Ltot⊗ Λ) --> (L' Ltot⊗ Λ') :=
(_,, LNWFS_l_mor_comp (pr2 τ) (pr2 ρ)).
Definition LNWFS_l_point {F : Ff C} (L : LNWFS _ F) :
LNWFS_lcomp_unit -->[Ff_l_point F] L.
Show proof.
split; (intro; use arrow_mor_eq).
- etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
etrans. apply id_left.
exact (pathsinv0 (lnwfs_Σ_top_map_id L a)).
- etrans. exact (pathsinv0 (arrow_mor_comm (pr1 L a))).
etrans. apply cancel_postcomposition.
exact (lnwfs_Σ_top_map_id L a).
etrans. apply id_left.
apply pathsinv0.
etrans. apply assoc'.
etrans. apply id_left.
apply id_left.
- apply id_left.
- apply (three_comp (fact_functor F a)).
- etrans. apply id_left.
apply pathsinv0.
etrans. apply id_right.
etrans. apply id_left.
exact (pathsinv0 (lnwfs_Σ_top_map_id L a)).
- etrans. exact (pathsinv0 (arrow_mor_comm (pr1 L a))).
etrans. apply cancel_postcomposition.
exact (lnwfs_Σ_top_map_id L a).
etrans. apply id_left.
apply pathsinv0.
etrans. apply assoc'.
etrans. apply id_left.
apply id_left.
- apply id_left.
- apply (three_comp (fact_functor F a)).
Definition LNWFS_tot_l_point (L : total_category (LNWFS C)) :
LNWFS_tot_lcomp_unit --> L :=
(_,, LNWFS_l_point (pr2 L)).
Lemma LNWFS_tot_mor_eq {L L' : total_category (LNWFS C)}
(τ τ' : L --> L') :
(∏ (f : arrow C), pr1 (pr11 τ f) = pr1 (pr11 τ' f)) ->
τ = τ'.
Show proof.
intro H.
apply subtypePath; [intro; apply isaprop_lnwfs_mor_axioms|].
apply subtypePath; [intro; apply isaprop_section_nat_trans_disp_axioms|].
apply funextsec.
intro f.
apply subtypePath; [intro; apply isapropdirprod; apply homset_property|].
exact (H f).
apply subtypePath; [intro; apply isaprop_lnwfs_mor_axioms|].
apply subtypePath; [intro; apply isaprop_section_nat_trans_disp_axioms|].
apply funextsec.
intro f.
apply subtypePath; [intro; apply isapropdirprod; apply homset_property|].
exact (H f).
End LNWFS_composition.
Notation "l L⊗ l'" := (LNWFS_lcomp l l') (at level 50).
Notation "l Ltot⊗ l'" := (LNWFS_tot_lcomp l l') (at level 50).
Notation "l L⊗pre τ" := (LNWFS_l_leftwhisker l τ) (at level 50).
Notation "l Ltot⊗pre τ" := (LNWFS_tot_l_leftwhisker l τ) (at level 50).
Notation "τ L⊗post l" := (LNWFS_l_rightwhisker τ l) (at level 50).
Notation "τ Ltot⊗post l" := (LNWFS_tot_l_rightwhisker τ l) (at level 50).
Require Import UniMath.CategoryTheory.Monoidal.Categories.
Require Import UniMath.CategoryTheory.Monoidal.Displayed.Monoidal.
Require Import UniMath.CategoryTheory.Monoidal.Displayed.TotalMonoidal.
Section LNWFS_monoidal.
Context {C : category}.
Definition LNWFS_disp_tensor_data : disp_tensor (LNWFS C) Ff_monoidal.
Show proof.
use tpair.
- use tpair.
* exact (@LNWFS_lcomp C).
* split.
+ intros; apply LNWFS_l_leftwhisker.
assumption.
+ intros A F F' γ α L L' γγ.
exact (LNWFS_l_rightwhisker γγ L').
- abstract (
repeat split; repeat intro; apply isaprop_lnwfs_mor_axioms
).
- use tpair.
* exact (@LNWFS_lcomp C).
* split.
+ intros; apply LNWFS_l_leftwhisker.
assumption.
+ intros A F F' γ α L L' γγ.
exact (LNWFS_l_rightwhisker γγ L').
- abstract (
repeat split; repeat intro; apply isaprop_lnwfs_mor_axioms
).
Definition LNWFS_disp_monoidal_data : disp_monoidal_data (LNWFS C) Ff_monoidal.
Show proof.
exists LNWFS_disp_tensor_data.
exists LNWFS_lcomp_unit.
repeat split.
- exact (pr1 (LNWFS_l_id_left xx)).
- exact (pr2 (LNWFS_l_id_left xx)).
- exact (pr1 (LNWFS_l_id_left_rev xx)).
- exact (pr2 (LNWFS_l_id_left_rev xx)).
- exact (pr1 (LNWFS_l_id_right xx)).
- exact (pr2 (LNWFS_l_id_right xx)).
- exact (pr1 (LNWFS_l_id_right_rev xx)).
- exact (pr2 (LNWFS_l_id_right_rev xx)).
- exact (pr1 (LNWFS_l_assoc xx yy zz)).
- exact (pr2 (LNWFS_l_assoc xx yy zz)).
- exact (pr1 (LNWFS_l_assoc_rev xx yy zz)).
- exact (pr2 (LNWFS_l_assoc_rev xx yy zz)).
exists LNWFS_lcomp_unit.
repeat split.
- exact (pr1 (LNWFS_l_id_left xx)).
- exact (pr2 (LNWFS_l_id_left xx)).
- exact (pr1 (LNWFS_l_id_left_rev xx)).
- exact (pr2 (LNWFS_l_id_left_rev xx)).
- exact (pr1 (LNWFS_l_id_right xx)).
- exact (pr2 (LNWFS_l_id_right xx)).
- exact (pr1 (LNWFS_l_id_right_rev xx)).
- exact (pr2 (LNWFS_l_id_right_rev xx)).
- exact (pr1 (LNWFS_l_assoc xx yy zz)).
- exact (pr2 (LNWFS_l_assoc xx yy zz)).
- exact (pr1 (LNWFS_l_assoc_rev xx yy zz)).
- exact (pr2 (LNWFS_l_assoc_rev xx yy zz)).
Definition LNWFS_disp_monoidal_laws : disp_monoidal_laws LNWFS_disp_monoidal_data.
Show proof.
Definition LNWFS_monoidal : disp_monoidal (LNWFS C) Ff_monoidal :=
(_,, LNWFS_disp_monoidal_laws).
Definition LNWFS_tot_monoidal : monoidal _ :=
total_monoidal LNWFS_monoidal.
Definition Ff_monoidal : monoidal (Ff C) :=
(_,, Ff_monoidal_laws).
End LNWFS_monoidal.
Require Import UniMath.CategoryTheory.Monads.Monads.
Require Import UniMath.CategoryTheory.Monoidal.CategoriesOfMonoids.
Section LNWFS_monoid_is_NWFS.
Context {C : category}.
Local Definition LNWFSC := total_category (LNWFS C).
Definition LNWFS_tot_monoid_is_NWFS_monoid_data
{L : LNWFSC} (R : monoid (LNWFS_tot_monoidal) L) :
monoid_data Ff_monoidal (pr1 L).
Show proof.
set (Rμ := pr1 (monoid_to_monoid_data _ R)).
set (RI := pr2 (monoid_to_monoid_data _ R)).
repeat split.
- exact (pr1 Rμ).
- exact (pr1 RI).
set (RI := pr2 (monoid_to_monoid_data _ R)).
repeat split.
- exact (pr1 Rμ).
- exact (pr1 RI).
Definition LNWFS_tot_monoid_is_NWFS_monoid_axioms
{L : LNWFSC} (R : monoid (LNWFS_tot_monoidal) L) :
monoid_laws _ (LNWFS_tot_monoid_is_NWFS_monoid_data R).
Show proof.
repeat split.
- set (law := monoid_to_unit_left_law _ R).
apply subtypePath; [intro; apply isaprop_section_nat_trans_disp_axioms|].
exact (base_paths _ _ (base_paths _ _ law)).
- set (law := monoid_to_unit_right_law _ R).
apply subtypePath; [intro; apply isaprop_section_nat_trans_disp_axioms|].
exact (base_paths _ _ (base_paths _ _ law)).
- set (law := monoid_to_assoc_law _ R).
apply subtypePath; [intro; apply isaprop_section_nat_trans_disp_axioms|].
exact (base_paths _ _ (base_paths _ _ law)).
- set (law := monoid_to_unit_left_law _ R).
apply subtypePath; [intro; apply isaprop_section_nat_trans_disp_axioms|].
exact (base_paths _ _ (base_paths _ _ law)).
- set (law := monoid_to_unit_right_law _ R).
apply subtypePath; [intro; apply isaprop_section_nat_trans_disp_axioms|].
exact (base_paths _ _ (base_paths _ _ law)).
- set (law := monoid_to_assoc_law _ R).
apply subtypePath; [intro; apply isaprop_section_nat_trans_disp_axioms|].
exact (base_paths _ _ (base_paths _ _ law)).
Definition LNWFS_tot_monoid_projection
{L : LNWFSC} (R : monoid (LNWFS_tot_monoidal) L) :
monoid Ff_monoidal (pr1 L) :=
(_,, LNWFS_tot_monoid_is_NWFS_monoid_axioms R).
Definition LNWFS_tot_monoid_is_NWFS
{L : LNWFSC} (R : monoid (LNWFS_tot_monoidal) L) :
NWFS C (pr1 L).
Show proof.
End LNWFS_monoid_is_NWFS.