Library UniMath.ModelCategories.NWFSisWFS

we can obtain a wfs from an nwfs the existence of an algebra map is exactly ||nwfs_R_maps_disp f||
Definition nwfs_R_maps_class {C : category} (n : nwfs C) : morphism_class C :=
    λ (x y : C) (f : x --> y), nwfs_R_maps n f.
Definition nwfs_L_maps_class {C : category} (n : nwfs C) : morphism_class C :=
    λ (x y : C) (f : x --> y), nwfs_L_maps n (opp_mor f).

Lemma L_map_class_R_map_class_lp {C : category} {n : nwfs C} {a b c d : C}
    {f : a --> b} {g : c --> d} (hf : nwfs_L_maps_class n _ _ f)
    (hg : nwfs_R_maps_class n _ _ g) : lp f g.
Show proof.
  use (hf); clear hf; intro hf.
  use (hg); clear hg; intro hg.
  intros h k Hhk.
  apply hinhpr.
  exact (L_map_R_map_elp hf hg h k Hhk).

Lemma nwfs_L_maps_subs_llp_R_maps {C : category} (n : nwfs C) :
    nwfs_L_maps_class n llp (nwfs_R_maps_class n).
Show proof.
  intros a b f hf.
  intros c d g hg.
  exact (L_map_class_R_map_class_lp hf hg).

dual to above statement
Lemma nwfs_R_maps_subs_rlp_L_maps {C : category} (n : nwfs C) :
    nwfs_R_maps_class n rlp (nwfs_L_maps_class n).
Show proof.
  intros c d g hg.
  intros a b f hf.
  exact (L_map_class_R_map_class_lp hf hg).

Lemma nwfs_L_maps_cl_subs_llp_R_maps_cl {C : category} (n : nwfs C) :
    (nwfs_L_maps_class n)^cl llp ((nwfs_R_maps_class n)^cl).
Show proof.
  intros a b f Hf.
  intros c d g Hg.

  use (Hf).
  intro H.
  destruct H as [x [y [f' [Lf' Retff']]]].

  use (Hg).
  intro H.
  destruct H as [z [w [g' [Rg' Retgg']]]].

  use (lp_of_retracts Retff' Retgg').
  exact (nwfs_L_maps_subs_llp_R_maps n _ _ _ Lf' _ _ _ Rg').

Lemma nwfs_R_maps_cl_subs_rlp_L_maps_cl {C : category} (n : nwfs C) :
    (nwfs_R_maps_class n)^cl rlp ((nwfs_L_maps_class n)^cl).
Show proof.
  intros c d g Hg.
  intros a b f Hf.

  use (Hf).
  intro H.
  destruct H as [x [y [f' [Lf' Retff']]]].

  use (Hg).
  intro H.
  destruct H as [z [w [g' [Rg' Retgg']]]].

  use (lp_of_retracts Retff' Retgg').
  exact (nwfs_R_maps_subs_rlp_L_maps n _ _ _ Rg' _ _ _ Lf').

Lemma nwfs_Lf_is_L_map {C : category} (n : nwfs C) :
     f : arrow C, (nwfs_L_maps_class n) _ _ (arrow_mor (fact_L n f)).
Show proof.
  intro f.

  apply hinhpr.
  exists (nwfs_Σ n f).
  split; use arrow_mor_eq.
  - etrans. apply cancel_postcomposition.
            exact (nwfs_Σ_top_map_id n f).
    apply id_left.
  - exact (nwfs_Σ_bottom_map_inv n f).
  - apply cancel_precomposition.
    apply pathsinv0.
    etrans. exact (nwfs_Σ_top_map_id n f).
    apply pathsinv0.
    exact (nwfs_Σ_top_map_id n (mor_to_arrow_ob _)).
  - exact (nwfs_Σ_bottom_map_L_is_middle_map_of_Σ _ _).

dual statement
Lemma nwfs_Rf_is_R_map {C : category} (n : nwfs C) :
     f : arrow C, (nwfs_R_maps_class n) _ _ (arrow_mor (fact_R n f)).
Show proof.
  intro f.

  apply hinhpr.
  exists (nwfs_Π n f).

  split; use arrow_mor_eq.
  - exact (nwfs_Π_top_map_inv n f).
  - etrans. apply cancel_precomposition.
            exact (nwfs_Π_bottom_map_id n f).
    apply id_right.
  - exact (nwfs_Π_bottom_map_R_is_middle_map_of_Π _ _).
  - apply cancel_postcomposition.
    apply pathsinv0.
    etrans. exact (nwfs_Π_bottom_map_id n f).
    apply pathsinv0.
    exact (nwfs_Π_bottom_map_id n (mor_to_arrow_ob _)).

Want to construct retract to L-map using lift. The L-map will be Lf
Lemma nwfs_llp_R_maps_cl_subs_L_maps_cl {C : category} (n : nwfs C) :
    llp ((nwfs_R_maps_class n)^cl) ((nwfs_L_maps_class n)^cl).
Show proof.
  intros a b f Hf.

  set (Lf := arrow_mor (fact_L n f)).
  set (Rf := arrow_mor (fact_R n f)).
  cbn in Rf.

  use (Hf _ _ Rf).
  - apply in_morcls_retc_if_in_morcls.
    exact (nwfs_Rf_is_R_map _ _).
  - exact Lf.
  - exact (identity _).
  - rewrite id_right.
    exact (LR_compatibility n f).
  - intro hl.
    destruct hl as [l [hl0 hl1]].

    apply hinhpr.
    exists _, _, Lf.
    split.
    * exact (nwfs_Lf_is_L_map n f).
    * use make_retract.
      + exact (identity _).
      + exact (identity _).
      + exact l.
      + exact Rf.
      + use make_is_retract.
        -- now rewrite id_right.
        -- exact hl1.
        -- rewrite id_left.
           exact (pathsinv0 hl0).
        -- rewrite id_left.
           apply pathsinv0.
           exact (LR_compatibility n f).

Want to construct R-map with retract from f using lift. The map will be Rf
Lemma nwfs_rlp_L_maps_cl_subs_R_maps_cl {C : category} (n : nwfs C) :
    rlp ((nwfs_L_maps_class n)^cl) ((nwfs_R_maps_class n)^cl).
Show proof.
  intros a b f hf.

  set (Lf := arrow_mor (fact_L n f)).
  set (Rf := arrow_mor (fact_R n f)).
  cbn in Lf, Rf.

  use (hf _ _ Lf).

  - apply in_morcls_retc_if_in_morcls.
    exact (nwfs_Lf_is_L_map n f).
  - exact (identity _).
  - exact Rf.
  - rewrite id_left.
    apply pathsinv0.
    exact (LR_compatibility n f).
  - intro hl.
    destruct hl as [l [hl0 hl1]].

    apply hinhpr.
    exists _, _, Rf.
    split.
    * exact (nwfs_Rf_is_R_map n f).
    * use make_retract.
      + exact Lf.
      + exact l.
      + exact (identity _).
      + exact (identity _).
      + use make_is_retract.
        -- exact hl0.
        -- now rewrite id_left.
        -- rewrite id_right.
           exact (LR_compatibility n f).
        -- rewrite id_right.
           exact hl1.

Lemma nwfs_is_wfs {C : category} (n : nwfs C) : wfs C.
Show proof.
  use make_wfs.
  - exact ((nwfs_L_maps_class n)^cl).
  - exact ((nwfs_R_maps_class n)^cl).
  - use make_is_wfs.
    * apply morphism_class_subset_antisymm.
      + exact (nwfs_L_maps_cl_subs_llp_R_maps_cl _).
      + exact (nwfs_llp_R_maps_cl_subs_L_maps_cl _).
    * apply morphism_class_subset_antisymm.
      + exact (nwfs_R_maps_cl_subs_rlp_L_maps_cl _).
      + exact (nwfs_rlp_L_maps_cl_subs_R_maps_cl _).
    * intros x y f.

      set (fact := fact_functor n f).
      set (f01 := three_mor01 fact).
      set (f12 := three_mor12 fact).

      apply hinhpr.
      exists (three_ob1 fact), f01, f12.

      repeat split.
      + apply in_morcls_retc_if_in_morcls.
        exact (nwfs_Lf_is_L_map n (three_mor02 fact)).
      + apply in_morcls_retc_if_in_morcls.
        exact (nwfs_Rf_is_R_map n (three_mor02 fact)).
      + exact (three_comp fact).

Lemma nwfs_closed_coproducts {C : category} {I : hSet} (n : nwfs C)
    {a b : I -> C}
    {f : (i : I), a i --> b i} (hf : (i : I), (nwfs_L_maps n (f i)))
    (CCa : Coproduct _ _ a) (CCb : Coproduct _ _ b) :
  nwfs_L_maps n (CoproductOfArrows _ _ CCa CCb f).
Show proof.
  transparent assert (ini : ( i, f i --> CoproductOfArrows I C CCa CCb f)).
  {
    intro i.
    use mors_to_arrow_mor.
    - exact (CoproductIn _ _ CCa i).
    - exact (CoproductIn _ _ CCb i).
    - abstract (apply CoproductInCommutes).
  }
  use tpair.
  - use mors_to_arrow_mor.
    * exact (identity _).
    * use CoproductArrow.
      intro i.
      apply (compose (arrow_mor11 (pr1 (hf i)))).
      exact (three_mor11 (#(fact_functor n) (ini i))).
    * abstract (
        etrans; [apply id_left|];
        use CoproductArrow_eq;
        intro i;
        etrans; [exact (pathsinv0 (pr1 (three_mor_comm (#(fact_functor n) (ini i)))))|];
        apply pathsinv0;
        etrans; [apply assoc|];
        etrans; [apply cancel_postcomposition;
                apply CoproductOfArrows'In|];
        etrans; [apply assoc'|];
        etrans; [apply cancel_precomposition;
                apply CoproductInCommutes|];
        etrans; [apply assoc|];
        apply cancel_postcomposition;
        etrans; [exact (pathsinv0 (arrow_mor_comm (pr1 (hf i))))|];
        etrans; [apply cancel_postcomposition;
                etrans; [exact (pathsinv0 (id_right _))|];
                exact (arrow_mor00_eq (pr12 (hf i)))|];
        apply id_left
      ).
  - split.
    * use arrow_mor_eq; [apply id_left|].
      use CoproductArrow_eq.
      intro i.
      etrans. apply assoc.
      etrans. apply cancel_postcomposition.
              use (CoproductInCommutes).
      etrans. apply assoc'.
      etrans. apply cancel_precomposition.
              exact (pathsinv0 (pr2 (three_mor_comm (#(fact_functor n) (ini i))))).
      etrans. apply assoc.
      etrans. apply cancel_postcomposition.
              exact (arrow_mor11_eq (pr12 (hf i))).
      etrans. apply id_left.
      apply pathsinv0.
      apply id_right.
    * use arrow_mor_eq.
      + apply cancel_precomposition.
        exact (nwfs_Σ_top_map_id n (CoproductOfArrows I C CCa CCb f)).
      + use CoproductArrow_eq.
        intro i.
        etrans. apply assoc.
        etrans. apply cancel_postcomposition.
                apply CoproductInCommutes.
        etrans. apply assoc'.
        etrans. apply cancel_precomposition.
        {
          set (Σnat := nat_trans_ax (nwfs_Σ n) _ _ (ini i)).
          exact (arrow_mor11_eq Σnat).
        }
        etrans. apply assoc.
        etrans. apply cancel_postcomposition.
                exact (arrow_mor11_eq (pr22 (hf i))).
        etrans. apply assoc'.
        apply pathsinv0.
        etrans. apply assoc.
        etrans. apply cancel_postcomposition.
                apply CoproductInCommutes.
        etrans. apply assoc'.
        apply cancel_precomposition.
        etrans. apply (pr1_section_disp_on_morphisms_comp).
        apply pathsinv0.
        etrans. apply (pr1_section_disp_on_morphisms_comp).
        use (section_disp_on_eq_morphisms).
        -- etrans. apply cancel_postcomposition.
                   etrans. exact (pathsinv0 (id_right _)).
                   exact (arrow_mor00_eq (pr12 (hf i))).
           etrans. apply id_left.
           apply pathsinv0.
           apply id_right.
        -- apply pathsinv0.
           etrans. apply (CoproductInCommutes I C _ CCb).
           reflexivity.

Definition chain_L_map {C : category}
    (d : chain C) (n : nwfs C) :=
   (u v : vertex nat_graph) (e : edge u v), nwfs_L_maps n (dmor d e).

Local Definition nwfs_tfcomp_ind_lp
    {C : category}
    {d : chain C}
    (n : nwfs C)
    (CC : ColimCocone d)
    (v : vertex nat_graph) :=
   (lp : dmor d (idpath (S v)) --> fact_R n (colimIn CC 0)),
    arrow_mor11 lp = colimIn CC (S v).

Local Definition nwfs_tfcomp_lp
    {C : category}
    {d : chain C}
    {n : nwfs C}
    (CC : ColimCocone d)
    (Hd : chain_L_map d n) :
   v, nwfs_tfcomp_ind_lp n CC v.
Show proof.
  induction v as [|v Hv].
  - use tpair.
      * use mors_to_arrow_mor.
        + exact (fact_L n (colimIn CC 0)).
        + exact (colimIn CC 1).
        + abstract (
            etrans; [exact (three_comp (fact_functor n (colimIn CC 0)))|];
            exact (pathsinv0 (colimInCommutes CC _ _ (idpath 1)))
          ).
      * reflexivity.
  - use tpair.
    * use mors_to_arrow_mor.
      + apply (compose (arrow_mor11 (pr1 (Hd _ _ (idpath (S v)))))).
        apply (compose (three_mor11 (#(fact_functor n) (pr1 Hv)))).
        exact (arrow_mor00 (nwfs_Π n (colimIn CC 0))).
      + exact (colimIn CC (S (S v))).
      + abstract (
          etrans; [apply cancel_postcomposition, assoc|];
          etrans; [apply assoc'|];
          etrans; [apply cancel_precomposition;
                  exact (arrow_mor_comm (nwfs_Π n (colimIn CC 0)))|];
          etrans; [do 2 apply cancel_precomposition;
                  exact (nwfs_Π_bottom_map_id n (colimIn CC 0))|];
          etrans; [apply cancel_precomposition, id_right|];
          etrans; [apply assoc'|];
          etrans; [apply cancel_precomposition;
                  exact (pathsinv0 (pr2 (three_mor_comm (#(fact_functor n) (pr1 Hv)))))|];
          etrans; [apply assoc|];
          etrans; [apply cancel_postcomposition;
                  exact (arrow_mor11_eq (pr12 (Hd _ _ (idpath (S v)))))|];
          etrans; [apply id_left|];
          etrans; [exact (pr2 Hv)|];
          exact (pathsinv0 (colimInCommutes CC _ _ (idpath (S (S v)))))
        ).
    * reflexivity.

Definition nwfs_tfcomp_alg_map
    {C : category}
    {d : chain C}
    {n : nwfs C}
    (CC : ColimCocone d)
    (Hd : chain_L_map d n) :
  colimIn CC 0 --> fact_L n (colimIn CC 0).
Show proof.
  use mors_to_arrow_mor.
  * exact (identity _).
  * use colimArrow.
    use make_cocone.
    + intro v.
      exact (arrow_mor00 (pr1 (nwfs_tfcomp_lp CC Hd v))).
    + abstract (
        intros u v e;
        rewrite <- e;
        clear v e;
        set (Hu := nwfs_tfcomp_lp CC Hd u);
        etrans; [apply assoc|];
        etrans; [apply cancel_postcomposition;
                etrans; [exact (pathsinv0 (arrow_mor_comm (pr1 (Hd _ _ (idpath (S u))))))|];
                apply cancel_postcomposition;
                etrans; [exact (pathsinv0 (id_right _))|];
                exact (arrow_mor00_eq (pr12 (Hd _ _ (idpath (S u)))))|];
        etrans; [apply cancel_postcomposition, id_left|];
        etrans; [apply assoc|];
        etrans; [apply cancel_postcomposition;
                exact (pr1 (three_mor_comm (#(fact_functor n) (pr1 Hu))))|];
        etrans; [apply assoc'|];
        etrans; [apply cancel_precomposition;
                exact (nwfs_Π_top_map_inv n (colimIn CC 0))|];
        apply id_right
      ).
  * abstract (
      etrans; [apply id_left|];
      apply pathsinv0;
      etrans; [apply (colimArrowCommutes)|];
      reflexivity
    ).

Local Lemma nwfs_tfcomp_lp_unit_compat
    {C : category}
    {d : chain C}
    {n : nwfs C}
    (CC : ColimCocone d)
    (Hd : chain_L_map d n)
    (v : vertex nat_graph)
    (Hv := nwfs_tfcomp_lp CC Hd v) :
  arrow_mor00 (pr1 Hv)
  · fact_R n (colimIn CC 0)
  = colimIn CC v.
Show proof.
  etrans. exact (arrow_mor_comm (pr1 Hv)).
  etrans. apply cancel_precomposition.
          exact (pr2 Hv).
  exact (colimInCommutes CC _ _ (idpath (S v))).

Local Definition comp_arr
    {C : category}
    {x y z : C}
    (f : x --> y)
    (g : y --> z) :
  f --> f · g.
Show proof.
  use mors_to_arrow_mor.
  - exact (identity _).
  - exact g.
  - abstract (apply id_left).

Lemma nwfs_wfs_closed_transfinite_composition
    {C : category}
    {d : chain C}
    {n : nwfs C}
    (CC : ColimCocone d)
    (Hd : chain_L_map d n) :
   (f : arrow C), nwfs_L_maps_class n _ _ f × retract f (colimIn CC 0).
Show proof.
  exists (fact_L n (colimIn CC 0)).
  split; [exact (nwfs_Lf_is_L_map _ _)|].
  use make_retract.
  - exact (identity _).
  - exact (identity _).
  - exact (arrow_mor11 (nwfs_tfcomp_alg_map CC Hd)).
  - exact (fact_R n (colimIn CC 0)).
  - use make_is_retract.
    * apply id_left.
    * apply pathsinv0.
      use colim_endo_is_identity.
      intro v.
      etrans. apply assoc.
      etrans. apply cancel_postcomposition.
              apply colimArrowCommutes.
      exact (nwfs_tfcomp_lp_unit_compat CC Hd v).
    * etrans. apply id_left.
      apply pathsinv0.
      apply colimArrowCommutes.
    * etrans. apply id_left.
      apply pathsinv0.
      exact (three_comp (fact_functor n (colimIn CC 0))).