Library UniMath.MoreFoundations.Sets

More results on sets

Contents

  • (More entries need to be added here...)
  • Other universal properties for setquot
  • The equivalence relation of being in the same fiber
  • Subsets
  • Binary relations

Local Open Scope logic.

Definition hProp_set : hSet := make_hSet _ isasethProp.

Definition isconst {X:UU} {Y:hSet} (f : X -> Y) : hProp := x x', f x = f x'.

Definition squash_to_hSet {X : UU} {Y : hSet} (f : X -> Y) : isconst f -> X -> Y.
Show proof.

Definition isconst_2 {X Y:UU} {Z:hSet} (f : X -> Y -> Z) : hProp :=
   x x' y y', f x y = f x' y'.

Definition squash_to_hSet_2 {X Y : UU} {Z : hSet} (f : X -> Y -> Z) :
  isconst_2 f -> X -> Y -> Z.
Show proof.
  intros c. use squash_to_set.
  { apply isaset_forall_hSet. }
  { intros x. use squash_to_hSet. exact (f x). intros y y'. exact (c x x y y'). }
  { intros x x'. apply funextfun; intros yn.
    apply (squash_to_prop yn).
    { apply setproperty. }
    intros y. assert (e : hinhpr y = yn).
    { apply propproperty. }
    induction e. change ( f x y = f x' y ). exact (c x x' y y). }

Definition isconst_2' {X Y:UU} {Z:hSet} (f : X -> Y -> Z) : hProp :=
    ( x x' y, f x y = f x' y)
    
    ( x y y', f x y = f x y').

Definition squash_to_hSet_2' {X Y : UU} {Z : hSet} (f : X -> Y -> Z) :
  isconst_2' f -> X -> Y -> Z.
Show proof.
  intros [c d]. use squash_to_set.
  { apply isaset_forall_hSet. }
  { intros x. use squash_to_hSet. exact (f x). intros y y'. exact (d x y y'). }
  { intros x x'. apply funextfun; intros yn.
    apply (squash_to_prop yn).
    { apply setproperty. }
    intros y. assert (e : hinhpr y = yn).
    { apply propproperty. }
    induction e. change ( f x y = f x' y ). exact (c x x' y). }

Definition eqset_to_path {X:hSet} (x y:X) : eqset x y -> paths x y := λ e, e.

Lemma isapropiscomprelfun {X : UU} {Y : hSet} (R : hrel X) (f : X -> Y) : isaprop (iscomprelfun R f).
Show proof.
  apply impred. intro x. apply impred. intro x'. apply impred. intro r. apply Y.

Lemma iscomprelfun_funcomp {X Y Z : UU} {R : hrel X} {S : hrel Y}
           {f : X Y} {g : Y Z} (Hf : iscomprelrelfun R S f) (Hg : iscomprelfun S g) :
  iscomprelfun R (g f).
Show proof.
  intros x x' r. exact (Hg _ _ (Hf x x' r)).

Definition fun_hrel_comp {X Y : UU} (f : X Y) (gt : hrel Y) : hrel X :=
  λ x y : X, gt (f x) (f y).

Other universal properties for setquot


Theorem setquotunivprop' {X : UU} {R : eqrel X} (P : setquot (pr1 R) -> UU)
        (H : x, isaprop (P x)) (ps : x : X, P (setquotpr R x)) : c : setquot (pr1 R), P c.
Show proof.
  exact (setquotunivprop R (λ x, make_hProp (P x) (H x)) ps).

Theorem setquotuniv2prop' {X : UU} {R : eqrel X} (P : setquot (pr1 R) setquot (pr1 R) UU)
        (H : x1 x2, isaprop (P x1 x2))
        (ps : x1 x2, P (setquotpr R x1) (setquotpr R x2)) : c1 c2 : setquot (pr1 R), P c1 c2.
Show proof.
  exact (setquotuniv2prop R (λ x1 x2, make_hProp (P x1 x2) (H x1 x2)) ps).

Theorem setquotuniv3prop' {X : UU} {R : eqrel X}
        (P : setquot (pr1 R) setquot (pr1 R) setquot (pr1 R) UU)
        (H : x1 x2 x3, isaprop (P x1 x2 x3))
        (ps : x1 x2 x3, P (setquotpr R x1) (setquotpr R x2) (setquotpr R x3)) :
   c1 c2 c3 : setquot (pr1 R), P c1 c2 c3.
Show proof.
  exact (setquotuniv3prop R (λ x1 x2 x3, make_hProp (P x1 x2 x3) (H x1 x2 x3)) ps).

Theorem setquotuniv4prop' {X : UU} {R : eqrel X}
        (P : setquot (pr1 R) setquot (pr1 R) setquot (pr1 R) setquot (pr1 R) UU)
        (H : x1 x2 x3 x4, isaprop (P x1 x2 x3 x4))
        (ps : x1 x2 x3 x4,
              P (setquotpr R x1) (setquotpr R x2) (setquotpr R x3) (setquotpr R x4)) :
   c1 c2 c3 c4 : setquot (pr1 R), P c1 c2 c3 c4.
Show proof.
  exact (setquotuniv4prop R (λ x1 x2 x3 x4, make_hProp (P x1 x2 x3 x4) (H x1 x2 x3 x4)) ps).

The equivalence relation of being in the same fiber


Definition same_fiber_eqrel {X Y : hSet} (f : X Y) : eqrel X.
Show proof.
  use make_eqrel.
  - intros x y.
    exact ((f x) = (f y)).
  - use iseqrelconstr.
    + intros ? ? ? xy yz; exact (xy @ yz).
    + intro; reflexivity.
    + intros ? ? eq; exact (!eq).

Subsets


Definition pi0 (X : UU) : hSet := setquotinset (pathseqrel X).

Section Pi0.
  Definition π : Type -> hSet := pi0.
  Definition component {X:Type} : X -> π X := setquotpr (pathseqrel X).
  Definition π₀_map {X Y:Type} : (X -> Y) -> (π X -> π Y)
    := λ f, setquotfun (pathseqrel X) (pathseqrel Y) f (λ x x', hinhfun (maponpaths f)).
  Definition π₀_universal_property {X:Type} {Y:hSet} : (π X -> Y) (X -> Y).
  Show proof.
    exists (λ h, h component). intros f. apply iscontraprop1.
    - apply isaproptotal2.
      + intros h. use (_ : isaset _). apply impred_isaset. intros x. apply setproperty.
      + intros h h' e e'. apply funextsec. intro w.
        { apply (surjectionisepitosets component).
          - apply issurjsetquotpr.
          - apply setproperty.
          - intros x. exact (maponpaths (λ k, k x) (e @ ! e')). }
    - now exists (setquotuniv _ _ f (λ x y e, squash_to_prop e (setproperty Y (f x) (f y)) (maponpaths f))).
  Definition π₀_universal_map {X:Type} {Y:hSet} : (X -> Y) -> (π X -> Y) := invmap π₀_universal_property.
  Lemma π₀_universal_map_eqn {X:Type} {Y:hSet} (f : X -> Y) :
     (x:X), π₀_universal_map f (component x) = f x.
  Show proof.
    reflexivity.
  Lemma π₀_universal_map_uniq {X:Type} {Y:hSet} (h h' : π X -> Y) :
    ( x, h (component x) = h' (component x)) -> h ~ h'.
  Show proof.
    intros e x. apply (surjectionisepitosets component).
    - apply issurjsetquotpr.
    - apply setproperty.
    - exact e.
End Pi0.

Minimal equivalence relations

Section mineqrel.

  Close Scope set.

  Context {A : UU} (R0 : hrel A).

  Lemma isaprop_eqrel_from_hrel a b :
    isaprop ( R : eqrel A, ( x y, R0 x y -> R x y) -> R a b).
  Show proof.
    apply impred; intro R; apply impred_prop.

  Definition eqrel_from_hrel : hrel A :=
    λ a b, make_hProp _ (isaprop_eqrel_from_hrel a b).

  Lemma iseqrel_eqrel_from_hrel : iseqrel eqrel_from_hrel.
  Show proof.
    repeat split.
    - intros x y z H1 H2 R HR. exact (eqreltrans _ _ _ _ (H1 _ HR) (H2 _ HR)).
    - now intros x R _; apply (eqrelrefl R).
    - intros x y H R H'. exact (eqrelsymm _ _ _ (H _ H')).

  Lemma eqrel_impl a b : R0 a b -> eqrel_from_hrel a b.
  Show proof.
    now intros H R HR; apply HR.

  Lemma minimal_eqrel_from_hrel (R : eqrel A) (H : a b, R0 a b -> R a b) :
     a b, eqrel_from_hrel a b -> R a b.
  Show proof.
    now intros a b H'; apply (H' _ H).

End mineqrel.

Definition maphrel
  {X X' : UU}
  (f : X X')
  (R : hrel X')
  : hrel X
  := λ x x', R (f x) (f x').

Lemma mapeqrel_iseqrel
  {X X' : UU}
  (f : X X')
  (R : eqrel X')
  : iseqrel (maphrel f R).
Show proof.
  repeat split.
  - intros x x' x''.
    apply eqreltrans.
  - intro x.
    apply eqrelrefl.
  - intros x y.
    apply eqrelsymm.

Definition mapeqrel
  {X X' : UU}
  (f : X X')
  (R : eqrel X')
  : eqrel X
  := make_eqrel _ (mapeqrel_iseqrel f R).

Lemma iscomprelrelfun_eqrel_from_hrel
  (X X' : UU)
  (R : hrel X)
  (R' : hrel X')
  (f : X X')
  (Hf : iscomprelrelfun R R' f)
  : iscomprelrelfun (eqrel_from_hrel R) (eqrel_from_hrel R') f.
Show proof.
  intros x x' Hx.
  intros R0 HR0.
  apply (Hx (mapeqrel f R0)).
  intros y y' Hy.
  apply HR0.
  apply Hf.
  apply Hy.

Definition prod_eqrel_pr1
  {X X' : UU}
  (R : eqrel (X × X'))
  (x' : X')
  : eqrel X.
Show proof.
  use ((λ x y, R (x ,, x') (y ,, x')) ,, _).
  abstract (
    repeat split;
    [ intros z z' z'';
      apply eqreltrans
    | intros z;
      apply eqrelrefl
    | intros z z';
      apply eqrelsymm ]
  ).

Definition prod_eqrel_pr2
  {X X' : UU}
  (R : eqrel (X × X'))
  (x : X)
  : eqrel X'.
Show proof.
  use ((λ x' y', R (x ,, x') (x ,, y')) ,, _).
  abstract (
    repeat split;
    [ intros z z' z'';
      apply eqreltrans
    | intros z;
      apply eqrelrefl
    | intros z z';
      apply eqrelsymm ]
  ).

Lemma eqrel_from_hreldirprod
  {X X' : UU}
  (R : hrel X)
  (R' : hrel X')
  (HR : isrefl R)
  (HR' : isrefl R')
  : eqrel_from_hrel (hreldirprod R R') = hreldirprod (eqrel_from_hrel R) (eqrel_from_hrel R').
Show proof.
  apply funextfun.
  intro x.
  apply funextfun.
  intro x'.
  apply weqtopathshProp.
  apply logeqweq.
  - refine (minimal_eqrel_from_hrel _ (eqreldirprod (make_eqrel _ (iseqrel_eqrel_from_hrel _)) (make_eqrel _ (iseqrel_eqrel_from_hrel _))) _ _ _).
    intros y y' Hy.
    induction Hy as [Hy1 Hy2].
    split;
      apply eqrel_impl;
      easy.
  - intros Hx R0 H.
    induction Hx as [Hx1 Hx2].
    refine (eqreltrans R0 _ _ _
      (Hx1 (prod_eqrel_pr1 R0 (pr2 x)) _)
      (Hx2 (prod_eqrel_pr2 R0 (pr1 x')) _)).
    + intros y y' Hy.
      apply H.
      split.
      * exact Hy.
      * apply HR'.
    + intros y y' Hy.
      apply H.
      split.
      * apply HR.
      * exact Hy.

Lemma eqreleq {A : UU} (R : eqrel A) (x y : A) : x = y R x y.
Show proof.
  intros e.
  induction e.
  apply eqrelrefl.

Additional lemmas on binary relations


Lemma isaprop_isirrefl {X : UU} (rel : hrel X) :
  isaprop (isirrefl rel).
Show proof.
  apply impred_isaprop ; intro.
  now apply isapropneg.
Lemma isaprop_issymm {X : UU} (rel : hrel X) :
  isaprop (issymm rel).
Show proof.
  apply impred_isaprop ; intro x.
  apply impred_isaprop ; intro y.
  apply isapropimpl.
  now apply pr2.
Lemma isaprop_iscotrans {X : UU} (rel : hrel X) :
  isaprop (iscotrans rel).
Show proof.
  apply impred_isaprop ; intro x.
  apply impred_isaprop ; intro y.
  apply impred_isaprop ; intro z.
  apply isapropimpl.
  now apply pr2.

Useful functions for when using univalence of sets
Definition univalence_hSet
           {X Y : hSet}
           (w : X Y)
  : X = Y
  := invmap (hSet_univalence _ _) w.

Definition hSet_univalence_map_univalence_hSet
           {X Y : hSet}
           (w : X Y)
  : hSet_univalence_map X Y (univalence_hSet w) = w.
Show proof.
  exact (homotweqinvweq (hSet_univalence _ _) w).

Definition hSet_univalence_univalence_hSet_map
           {X Y : hSet}
           (p : X = Y)
  : univalence_hSet (hSet_univalence_map X Y p) = p.
Show proof.
  exact (homotinvweqweq (hSet_univalence _ _) p).

Definition univalence_hSet_idweq
           (X : hSet)
  : univalence_hSet (idweq X) = idpath X.
Show proof.
  refine (_ @ hSet_univalence_univalence_hSet_map (idpath _)).
  apply maponpaths.
  apply idpath.

Definition hSet_univalence_map_inv
           {X Y : hSet}
           (p : X = Y)
  : hSet_univalence_map _ _ (!p) = invweq (hSet_univalence_map _ _ p).
Show proof.
  induction p.
  cbn.
  use subtypePath.
  {
    intro.
    apply isapropisweq.
  }
  apply idpath.

Definition univalence_hSet_inv
           {X Y : hSet}
           (w : X Y)
  : !(univalence_hSet w) = univalence_hSet (invweq w).
Show proof.